首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel polymeric Schiff base was synthesized by the reaction of a Schiff base from 2,4‐dihydroxy benzaldehyde and aniline with acryloyl chloride and was polymerized in methyl ethyl ketone at 70°C with benzoyl peroxide as a free‐radical initiator. Polychelates were obtained in an alkaline solution of poly(2‐hydroxy‐4‐acryloyloxy‐N‐phenylbenzylidine) with aqueous solutions of metal ions such as Cu(II), Ni(II), Co(II), Ca(II), Cd(II), Mn(II), and Zn(II). The polymeric Schiff base and polychelates were characterized with elemental analysis and spectral studies. The elemental analysis of the polychelates suggested that the metal‐to‐ligand ratio was 1:2. The IR spectral data of the polychelates indicated that the metals were coordinated through the nitrogen and oxygen of the phenolic ? OH group. Diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moment studies revealed that the polychelates of the Cu(II) complex were square‐planar, those of the Ni(II), Mn(II), and Co(II) complexes were octahedral, and those of the Ca(II), Cd(II), and Zn(II) complexes were tetrahedral. X‐ray diffraction studies revealed that the polychelates were highly crystalline. The thermal properties of the Schiff base and polychelates were also examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 494–500, 2004  相似文献   

2.
O‐aminophenol was reacted with glutraldehyde to obtain Schiff base, which was then reacted with formaldehyde in slight acidic medium to generate phenolic groups. Now the substituted Schiff base was reacted with the transition metal acetates of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) to get polymeric metal complexes. Their structures have been elucidated on the basis of elemental analyses, 1H NMR spectra, 13C NMR spectra, magnetic measurements, thermogravimetric analyses, electronic spectra, and infrared spectra. The results are in accordance with an octahedral environment around the central metal ion. The polychelates of Mn(II), Co(II), Ni(II), and Cu(II) are paramagnetic while Zn(II) polychelate was found to be diamagnetic. The synthesized Schiff base acted as a uninegative bidentate ligand and bonding occurs through the hydroxyl oxygen and nitrogen atoms. The thermal behavior of these coordinating polymers was studied by TGA in nitrogen atmosphere up to the temperature range of 800°C. All the synthesized polychelates were also screened for their biocidal activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis (bacteria), Candida albicans, and Muller species (yeast) by using agar well diffusion method. All the metal polychelates show promising antimicrobial activities. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 124:3971–3979, 2012  相似文献   

3.
We studied the reaction between urea and formaldehyde with the purpose of preparing new polychelates of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) metal ions. These compounds were characterized by elemental analysis, IR spectroscopy, 1H‐NMR, electronic spectroscopy, thermogravimetric analysis (TGA), and molar conductance measurements. The percentage of metal in all of the polychelates was found to be consistent with 1:1.5 (metal/ligand) stoichiometry. The thermal behaviors of these coordination polymers were studied by TGA in a nitrogen atmosphere up to 750°C. The TGA results reveal that the complexes had higher thermal‐resistance properties compared to the common urea–formaldehyde resin. The molar conductivity and magnetic susceptibility measurements of the synthesized polychelates confirmed the geometry of the complexes. The antibacterial activity of the polychelates was also investigated with agar diffusion methods. The antibacterial activity of these polychelates was found to be reasonably good compared with standard drugs, namely, ciprofloxacin, ampicillin, and kanamycin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 928–936, 2006  相似文献   

4.
The polymer metal complexes of transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with a new polymeric Schiff base containing formaldehyde and piperazine moieties have been synthesized by the condensation and characterized by elemental analyses, infrared spectra, electronic spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA). The results of the electronic spectra and magnetic moments indicate that the polymer–metal complexes of Mn(II), Co(II) and Ni(II) have octahedral geometry, while the complexes of Cu(II) and Zn(II) show square planar and tetrahedral geometry, respectively. The analyses of the thermal curves of all the polymer metal complexes show better thermal stability than the polymeric Schiff base. All compounds show excellent antibacterial as well as antifungal activity against three types of bacteria and two types of fungi. The antimicrobial activities were determined by using the agar well diffusion method with 100 μg/mL concentrations of polymer metal complex.  相似文献   

5.
A monomeric Schiff base was prepared by the condensation reaction of salicylaldehyde and semicarbazide, which further react with formaldehyde and barbituric acid-formed polymeric Schiff base. Its metal polychelates were then formed with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). All the synthesized compounds were characterized by elemental analysis, magnetic moment, FTIR, 1HNMR, and electronic spectroscopies. The elemental analysis data show the formation of 1:1 [M: L] metal polychelates. Thermogravimetric analysis was carried out to find the thermal behavior of all the synthesized polymeric compounds and thermal data revealed that all the metal polychelates are more thermally stable than their parent polymeric Schiff base. All the synthesized polymeric compounds were screened for antimicrobial activity against some clinically important microorganisms, such as Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus typhi, Candida albicans, Microsporum canis, and Aspergillus niger. In vitro antimicrobial activity was determined by the Agar Well Diffusion method and the result shows that all the metal polychelates exhibited better antimicrobial activity than their parent polymeric Schiff base.  相似文献   

6.
2-Hydroxy-4-acryloyloxybenzophenone (2H4ABP) prepared by reacting acryloyl chloride with 2,4-dihydroxybenzophenone, was polymerized in 2-butanone at 65°C using benzoyl peroxide as initiator. Polychelates were obtained in the alkaline solution of poly(2H4ABP) with aqueous solutions of metal ions such as Ni(II), Mn(II), Co(II), Ca(II), Cd(II) and Zn(II). The polymer and polychelates were characterized by elemental analyses and spectral studies. Elemental analyses of the polychelates suggest that the metal-to-ligand ratio is 1: 2. The IR spectral data of the polychelates indicate that the metals were coordinated through the oxygen of the keto group and oxygen of the phenolic −OH group. The diffuse reflectance spectra, EPR and magnetic moments studies reveal that the polychelates of Cu(II) complex are square planar, and Ni(II), Mn(II) and Co(II) complexes are octahedral, while Ca(II), Cd(II) and Zn(II) complexes are tetrahedral. X-ray diffraction studies revealed that the polychelates are highly crystalline. The thermal and electrical properties of polymer and polymer–metal complexes are discussed. © 1998 SCI.  相似文献   

7.
The reactions of the bidentate polymeric chelating ligand poly[N-(4-carboxy-3-hydroxyphenyl)maleimide] with Co(II), Ni(II), Cu(II), Zn(II) and UO2(II) metal ions were investigated. Analytical, magnetic, spectral and thermal studies were used to characterize these polychelates. All these polychelates are stable, intensely coloured solids and insoluble in common organic solvents.  相似文献   

8.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004  相似文献   

9.
Monomeric Schiff base derived from salicylaldehyde and 1,3‐diaminopropane was subjected to polycondensation reaction with formaldehyde and piperazine in basic medium. The resin was found to form polychelates readily with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) metal ions. The materials were characterized by elemental analysis, spectral studies (IR, 1H‐NMR, 13C‐NMR, and UV–visible), magnetic moment measurements, and thermal analysis. The electronic spectra and magnetic moment measurements of the synthesized polychelates confirmed the geometry of the central metal ion. Metal–resin bonds were registered in the IR spectra of the polychelates. The thermogravimetric analysis data indicated that the polychelates were more stable than the corresponding polymeric Schiff base. All the synthesized metal–polychelates showed excellent antibacterial activities against the selected bacteria. The antimicrobial activities were determined by using the shaking flask method, where 25 mg/mL concentrations of each compound were tested against 105 CFU/mL bacteria solutions. The number of viable bacteria was calculated by using the spread‐plate method, where 100 μL of the incubated antimicrobial agent in bacteria solutions were spread on agar plates, and the number of bacteria was counted after 24 h of incubation period at 37°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Poly(8‐hydroxy‐4‐azoquinolinephenol‐formaldehyde) resin (8H4AQPF) was prepared by condensing 8‐hydroxy 4‐azoquinoline phenol with formaldehyde (1 : 1 mol ratio) in the presence of oxalic acid. Polychelates were obtained when the DMF solution of poly(8H4AQPF) containing a few drops of ammonia was treated with the aqueous solution of Cu(II) and Ni(II) ions. The polymeric resin and polymer–metal complexes were characterized with elemental analysis and spectral studies. The elemental analysis of the polymer–metal complexes suggested that the metal‐to‐ligand ratio was 1 : 2. The IR spectral data of the polychelates indicated that the metals were coordinated through the nitrogen and oxygen of the phenolic ? OH group. Diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moment studies revealed that the polymer–metal complexes of the Cu(II) complexes were square planar and those of the Ni(II) complexes were octahedral. X‐ray diffraction studies revealed that the polymer metal complexes were crystalline. The thermal properties of the polymer and polymer–metal complexes were also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1506–1510, 2006  相似文献   

11.
A chelating polymer, poly(2,4‐dihydroxy benzophenone hydrazone–formaldehyde) [poly(DHBPH–F)], was synthesized by the polycondensation of 2,4‐dihydroxy benzophenone hydrazone with formaldehyde in the presence of oxalic acid as a catalyst. Poly(DHBPH–F) was characterized by Fourier transform infrared and 1H‐NMR spectral data. The molecular weight of the polymer was determined by gel permeation chromatography. Polychelates were obtained when the dimethylformamide solution of the polymer containing a few drops of ammonia was treated with an aqueous solution of metal ions. Elemental analysis of the polychelates indicated that the metal–ligand ratio was 1 : 2. The IR spectra of the polymer–metal complexes suggested that the metals were coordinated through the oxygen of the phenolic? OH group and the nitrogen of the azomethine group. The electron paramagnetic resonance and magnetic moment data indicated a square planar configuration for Cu(II) chelate and an octahedral structure for Ni(II) chelate. The thermogravimetric analysis, differential scanning calorimetry, and X‐ray diffraction data indicated that the incorporation of the metal ions significantly enhanced the degree of crystallinity. The polymerization initiation, electrical conductivity, and catalytic activity of the polychelates are discussed. Heavy‐metal ions [viz., Cu(II) and Ni(II)] were removed with this formaldehyde resin, and the metal‐ion uptake efficiency at different pH's, the nature and concentration of the electrolyte, and the reusability of the resin were also studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Summary The parent polymer, poly(allylamine) as ligand polymer was employed to synthesize polychelates of heavy metal ions. The functional poly(allylamine) and its Ni(II), Co(II) and Cu(II) metal chelates were characterized by elemental analysis, FT-IR spectroscopy, TGA, and SEM. For the polychelates magnetic and conductivimetry studies were also carried out.  相似文献   

13.
The polymeric metal complexes of poly (3‐hydroxy‐4‐((Z)‐1‐(phenylimino)ethyl)phenyl‐3‐methylbut‐2‐enoate) designated as [poly(3H4‐1PEPMB)] and poly (3‐hydroxy‐4‐((Z)‐phenyl(phenylimino)methyl)phenyl‐3‐methylbut‐2‐enoate designated as [poly(3H4‐PPMPMB)] containing Cu(II), Ni(II), Co(II), Cd(II), Mn(II), Ca(II), and Zn(II) ions were synthesized. The ploymer ligands and metal complexes were charcterized by Fourier transform infrared, nuclear magnetic resonance (NMR), thermogravimetric analysis, differential scanning calorimeter (DSC), and X‐ray diffraction (XRD) techniques. The XRD study of the complexes revealed highly crystalline nature of polychelates. The polymeric complexes were active for the oxidation of aldehyde group. The oxidation activity of Cu (II) complex of poly (3H4‐1PEPMB) was studied for the oxidation of benzaldehyde and its derivaties to corresponding carboxylic acids. The oxidation products were confirmed by GC‐MS analysis. The oxidation of aldehydes was quantitative with 100% selectivity for benzioc acid. Thermal analysis of complexes indicated reasonably good thermal stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Polymeric metal complexes of 3,3′-benzidine dicarboxylic acid with bivalent metal ions such as copper, nickel, cobalt, zinc and manganese have been synthesized and their properties, composition, IR-absorption spectra and magnetic susceptibilities were investigated. The coloured, powderly solids were obtained by refluxing the metal acetate and the ligand in the appropriate ratio for about half an hour and dried at 110°C. The compounds are stable and insoluble in common solvents. The analytical data indicate the general formula, [ML]n for Cu(II), Mn(II) and [M4L5]n for Ni(II), Co(II) and Zn(II). The mode of coordination of the ligand with metal ions has been elucidated by comparing IR spectra of the ligand and the complexes. A polymeric structure is proposed for the complexes.  相似文献   

15.
Poly(ethylene aspartate) [PEA] was synthesized by the melt condensation of D,L-aspartic acid and ethylene glycol. PEA containing pendent amino and carbonyl groups in its repeating chain was used as the polymeric ligand for complexation with transition metal ions, viz. Co(II), Ni(II), Cu(II), Mn(II), Zn(II), Cd(II), Ca(II), Mg(II), Pb(II) and Hg(II). Complexation was found to be most effective in DMSO. The resulting polyester-metal complexes were solid coloured materials which have been characterized by IR spectroscopy, elemental analysis and magnetic susceptibility measurements. The thermal stability of the polyester-metal complexes was investigated by thermogravimetric analysis (TGA). On the basis of the physico-chemical studies, an oxygen and nitrogen coordinated structure for the polyester-metal complexes is proposed.  相似文献   

16.
A new polymeric Schiff base containing formaldehyde and 2‐thiobarbituric acid moieties was synthesized by the condensation of a monomeric Schiff base derived from 2‐hydroxyacetophenone and hydrazine. Polymer–metal complexes were also synthesized by the reaction of the polymeric Schiff base with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) acetate. The polymeric Schiff base and its polymer–metal complexes were characterized with magnetic moment measurements, elemental analyses, and spectral techniques (infrared, 1H‐NMR, and ultraviolet–visible). The thermal behaviors of these coordination polymers were studied by thermogravimetric analysis in a nitrogen atmosphere up to 800°C. The thermal data revealed that all of the polymer–metal complexes showed higher thermal stabilities than the polymeric Schiff base and also ascribed that the Cu(II) polymer–metal complex showed better heat resistant properties than the other polymer–metal complexes. The antimicrobial activity was screened with the agar well diffusion method against various selected microorganisms, and all of the polymer–metal complexes showed good antimicrobial activity. Among all of the complexes, the antimicrobial activity of the Cu(II) polymer–metal complex showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Respropiophenone-formaldehyde copolymers (RPP-F) were synthezised by the condensation of 2,4-dihydroxypropiophenone (respropiophenone (RPP)) and formaldehyde (F) in the presence of NaOH or H2SO4 as catalyst with varied molar ratios of reacting monomers. The copolymers were characterized by elemental analysis, IR spectra, viscosity, and TGA studies. Their M?n was determined by nonaqueous conductometric titrations and vapour pressure osmometry (VPO). Chelation ion-exchange properties have also been studied employing the batch equilibration method. Polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(II), and UO2(II) with RPP-F-AI copolymer were prepared. The analytical data agree with 1 : 2 metal-ligand stoichiometry. Elemental analysis, magnetic, spectral, and thermal properties of polychelates have been studied and probable structures are assigned to the polychelates. All the polychelates are amorphous powders, insoluble in common organic solvents.  相似文献   

18.
8‐hydroxy‐5‐azoquinolinephenylacrylate‐formaldehyde (8H5AQPA‐F) macromonomer was prepared from acryloylchloride, with condensation products of 8‐hydroxy‐5‐azoquinolinephenol‐formaldehyde, and polymerized in DMF at 70°C using benzoyl peroxide as free radical initiator. Poly(8H5AQPA‐F) was characterized by infrared and nuclear magnetic resonance spectroscopic techniques. Polychelates were obtained in alkaline solution of polymeric ligand, with the aqueous solution of Cu(II) and Ni(II). Elemental analysis of polychelates suggests that the metal to ligand ratio is about 1:2. The polymer metal complexes were also characterized by IR, XRD, magnetic moments, and thermal analysis. The effects of pH and electrolyte on the metal uptake behavior of the resin were also studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 797–802, 2007  相似文献   

19.
A series of poly(acrylamide‐co‐4‐vinylpyridine) hydrogels having varied acrylamide/4‐vinylpyridine content and different crosslink ratios of N,N′‐methylene‐bisacrylamide was prepared by using solution polymerization. The prepared hydrogel polymers were characterized by their elemental analysis, infrared spectroscopy, and equilibrium water content. The polymers were investigated toward metal ion uptake of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The polymers were more sensitive to Cu(II) and Ni(II) and the order of metal ion binding was Ni(II), Cu(II) > Zn(II) > Co(II) > Mn(II). Metal ion uptake by the polymers was reduced as the pH of the medium decreased. Recycling of the resins resulted in high recovery of the metal ions from their aqueous solutions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2522–2526, 2003  相似文献   

20.
Polymer metal complexes of poly(styrene sulfonic acid‐co‐maleic acid) and Cu(II), Ni(II), Co(II), and Zn(II) were synthesized. The magnetic, spectral, and thermal properties, as well as the electrical conductivities, of the chelates were investigated, and possible structures were assigned to the polychelates. Semiempirical calculations at the AM1 level were carried out on the geometrical arrangement of the polychelates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2546–2551, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号