首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper, a new metric advancing front surface mesh generation scheme is suggested. This new surface mesh generator is based on a new geometrical model employing the interpolating subdivision surface concept. The target surfaces to be meshed are represented implicitly by interpolating subdivision surfaces which allow the presence of various sharp and discontinuous features in the underlying geometrical model. While the main generation steps of the new generator are based on a robust metric surface triangulation kernel developed previously, a number of specially designed algorithms are developed in order to combine the existing metric advancing front algorithm with the new geometrical model. As a result, the application areas of the new mesh generator are largely extended and can be used to handle problems involving extensive changes in domain geometry. Numerical experience indicates that, by using the proposed mesh generation scheme, high quality surface meshes with rapid varying element size and anisotropic characteristics can be generated in a short time by using a low‐end PC. Finally, by using the pseudo‐curvature element‐size controlling metric to impose the curvature element‐size requirement in an implicit manner, the new mesh generation procedure can also generate finite element meshes with high fidelity to approximate the target surfaces accurately. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The localized remeshing technique for three‐dimensional metal forming simulations is proposed based on a mixed finite element formulation with linear tetrahedral elements in the present study. The numerical algorithm to generate linear tetrahedral elements is developed for finite element analyses using the advancing front technique with local optimization method which keeps the advancing fronts smooth. The surface mesh generation using mesh manipulations of the boundary elements of the old mesh system was made to improve mesh quality of the boundary surface elements, resulting in reduction of volume change in forming simulations. The mesh quality generated was compared with that obtained from the commercial CAD package for the complex geometry like lumbar. The simulation results of backward extrusion and bevel gear and spider forgings indicate that the currently developed simulation technique with the localized remeshing can be used effectively to simulate the three‐dimensional forming processes with a reduced computation time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Accurate sizing functions are crucial for efficient generation of high‐quality meshes, but to define the sizing function is often the bottleneck in complicated mesh generation tasks because of the tedious user interaction involved. We present a novel algorithm to automatically create high‐quality sizing functions for surface mesh generation. First, the tessellation of a Computer Aided Design (CAD) model is taken as the background mesh, in which an initial sizing function is defined by considering geometrical factors and user‐specified parameters. Then, a convex nonlinear programming problem is formulated and solved efficiently to obtain a smoothed sizing function that corresponds to a mesh satisfying necessary gradient constraint conditions and containing a significantly reduced element number. Finally, this sizing function is applied in an advancing front mesher. With the aid of a walk‐through algorithm, an efficient sizing‐value query scheme is developed. Meshing experiments of some very complicated geometry models are presented to demonstrate that the proposed sizing‐function approach enables accurate and fully automatic surface mesh generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A new approach to generate finite point meshes on 2D flat surface and any bi‐variate parametric surfaces is suggested. It can be used to generate boundary‐conforming anisotropic point meshes with node spacing compatible with the metric specifications defined in a background point mesh. In contrast to many automatic mesh generation schemes, the advancing front concept is abandoned in the present method. A few simple basic operations including boundary offsetting, node insertion and node deletion are used instead. The point mesh generation schemeis initialized by a boundary offsetting procedure. The point mesh quality is then improved by node insertion and deletion such that optimally spaced nodes will fill up the entire problem domain. In addition to the point mesh generation scheme, a new way to define the connectivity of a point mesh is also suggested. Furthermore, based on the connectivity information, a new scheme to perform smoothing for a point mesh is proposed toimprove the node spacing quality of the mesh. Timing shows thatdue to the simple node insertion and deletion operations, the generation speed of the new scheme is nearly 10 times faster than a similar advancing front mesh generator. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A new approach to the automatic generation of a quadrilateral mesh with arbitrary line constraints is proposed in this paper. It is an indirect all‐quad mesh generation and presented in the following steps: (1) discretizing the constrained lines within the domain; (2) converting the above domain to a triangular mesh together with the line constraints; (3) transforming the generated triangular mesh with line constraints to an all‐quad mesh through performing an advancing front algorithm from the line constraints, which enables the construction of quadrilaterals layer by layer, and roughly keeps the feature of the initial triangular mesh; (4) optimizing the topology of the quadrilateral mesh to reduce the number of irregular nodes; (5) smoothing the generated mesh toward high‐quality all‐quad mesh generation. Finally, a few application examples are given to demonstrate the reliability and usefulness of the proposed algorithm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
An algorithm for tetrahedron mesh generation and optimization with respect to a shape and a size criterion is presented. A well distributed set of nodes is first generated by an octree method, and the set is then triangulated. The advancing front technique is used to mesh the whole volume. Emphasis has been placed on management of the front. The method involves priority construction of enhanced quality tetrahedra. Each face is assigned to a front corresponding to the quality of the best tetrahedron which can be constructed. Elements are destroyed in the case of non-convergence. Optimization procedures make local use of the algorithm used to mesh the complete model. Industrial examples of relatively complex volumes are given, demonstrating that a high quality and optimized mesh can be obtained by the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
A new fully automatic hex‐dominant mesh generation technique of an arbitrary 3D geometric domain is presented herein. The proposed method generates a high‐quality hex‐dominant mesh by: (1) controlling the directionality of the output hex‐dominant mesh; and (2) avoiding ill‐shaped elements induced by nodes located too closely to each other. The proposed method takes a 3D geometric domain as input and creates a hex‐dominant mesh consisting mostly of hexahedral elements, with additional prism and tetrahedral elements. Rectangular solid cells are packed on the boundary of and inside the input domain to obtain ideal node locations for a hex‐dominant mesh. Each cell has a potential energy field that mimics a body‐centred cubic (BCC) structure (seen in natural substances such as NaCl) and the cells are moved to stable positions by a physically based simulation. The simulation mimics the formation of a crystal pattern so that the centres of the cells provide ideal node locations for a hex‐dominant mesh. Via the advancing front method, the centres of the packed cells are then connected to form a tetrahedral mesh, and this is converted to a hex‐dominant mesh by merging some of the tetrahedrons. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
An extended advancing front technique (AFT) with shift operations and Riemann metric named as shifting‐AFT is presented for finite element mesh generation on 3D surfaces, especially 3D closed surfaces. Riemann metric is used to govern the size and shape of the triangles in the parametric space. The shift operators are employed to insert a floating space between real space and parametric space during the 2D parametric space mesh generation. In the previous work of closed surface mesh generation, the virtual boundaries are adopted when mapping the closed surfaces into 2D open parametric domains. However, it may cause the mesh quality‐worsening problem. In order to overcome this problem, the AFT kernel is combined with the shift operator in this paper. The shifting‐AFT can generate high‐quality meshes and guarantee convergence in both open and closed surfaces. For the shifting‐AFT, it is not necessary to introduce virtual boundaries while meshing a closed surface; hence, the boundary discretization procedure is largely simplified, and moreover, better‐shaped triangles will be generated because there are no additional interior constraints yielded by virtual boundaries. Comparing with direct methods, the shifting‐AFT avoids costly and unstable 3D geometrical computations in the real space. Some examples presented in this paper have demonstrated the advantages of shift‐AFT in 3D surface mesh generation, especially for the closed surfaces. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
An octree‐based mesh generation method is proposed to create reasonable‐quality, geometry‐adapted unstructured hexahedral meshes automatically from triangulated surface models without any sharp geometrical features. A new, easy‐to‐implement, easy‐to‐understand set of refinement templates is developed to perform local mesh refinement efficiently even for concave refinement domains without creating hanging nodes. A buffer layer is inserted on an octree core mesh to improve the mesh quality significantly. Laplacian‐like smoothing, angle‐based smoothing and local optimization‐based untangling methods are used with certain restrictions to further improve the mesh quality. Several examples are shown to demonstrate the capability of our hexahedral mesh generation method for complex geometries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Multiblock‐structured meshes have significant advantages over fully unstructured meshes in numerical simulation, but automatically generating these meshes is considerably more difficult. A method is described herein for automatically generating high‐quality multiblock decompositions of surfaces with boundaries. Controllability and flexibility are useful capabilities of the method. Additional alignment constraints for forcing the appearance of particular features in the decomposition can be easily handled. Also, adjustments are made according to input metric tensor fields that describe target element size properties. The general solution strategy is based around using a four‐way symmetry vector‐field, called a cross‐field, to describe the local mesh orientation on a triangulation of the surface. Initialisation is performed by propagating the boundary alignment constraints to the interior in a fast marching method. This is similar in a way to an advancing‐front or paving method but much more straightforward and flexible because mesh connectivity does not have to be managed in the cross‐field. Multiblock decompositions are generated by tracing the separatrices of the cross‐field to partition the surface into quadrilateral blocks with square corners. The final task of meshing the decomposition requires solving an integer programming problem for block division numbers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A new algorithm for constructing full quadrilateral anisotropic meshes on 3D surfaces is proposed in this paper. The proposed method is based on the advancing front and the systemic merging techniques. Full quadrilateral meshes are constructed by systemically converting triangular elements in the background meshes into quadrilateral elements.By using the metric specifications to describe the element characteristics, the proposed algorithm is applicable to convert both isotropic and anisotropic triangular meshes into full quadrilateral meshes. Special techniques for generating anisotropic quadrilaterals such as new selection criteria of base segment for merging, new approaches for the modifications of the background mesh and construction of quadrilateral elements, are investigated and proposed in this study. Since the final quadrilateral mesh is constructed from a background triangular mesh and the merging procedure is carried out in the parametric space, the mesh generator is robust and no expensive geometrical computation that is commonly associated with direct quadrilateral mesh generation schemes is needed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A new mesh generation algorithm called ‘LayTracks’, to automatically generate an all quad mesh that is adapted to the variation of geometric feature size in the domain is described. LayTracks combines the merits of two popular direct techniques for quadrilateral mesh generation—quad meshing by decomposition and advancing front quad meshing. While the MAT has been used for the domain decomposition before, this is the first attempt to use the MAT, for the robust subdivision of a complex domain into a well defined sub‐domain called ‘Tracks’, for terminating the advancing front of the mesh elements without complex interference checks and to use radius function for providing sizing function for adaptive meshing. The process of subdivision of a domain is analogous to, formation of railway tracks by laying rails on the ground. Each rail starts from a node on the boundary and propagates towards the medial axis (MA) and then from the MA towards the boundary. Quadrilateral elements are then obtained by placing nodes on these rails and connecting them inside each track, formed by adjacent rails. The algorithm has been implemented and tested on some typical geometries and the quality of the output mesh obtained are presented. Extension of this technique to all hexahedral meshing is discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Q‐Morph is a new algorithm for generating all‐quadrilateral meshes on bounded three‐dimensional surfaces. After first triangulating the surface, the triangles are systematically transformed to create an all‐quadrilateral mesh. An advancing front algorithm determines the sequence of triangle transformations. Quadrilaterals are formed by using existing edges in the triangulation, by inserting additional nodes, or by performing local transformations to the triangles. A method typically used for recovering the boundary of a Delaunay mesh is used on interior triangles to recover quadrilateral edges. Any number of triangles may be merged to form a single quadrilateral. Topological clean‐up and smoothing are used to improve final element quality. Q‐Morph generates well‐aligned rows of quadrilaterals parallel to the boundary of the domain while maintaining a limited number of irregular internal nodes. The proposed method also offers the advantage of avoiding expensive intersection calculations commonly associated with advancing front procedures. A series of examples of Q‐Morph meshes are also presented to demonstrate the versatility of the proposed method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a new computational method for anisotropic tetrahedral meshing. The method can control element anisotropy based on a specified 3×3 tensor field defined over a volumetric domain. Our method creates a tetrahedral mesh in two steps: (1) placing nodes at the centres of tightly packed ellipsoidal cells, called bubbles, in the domain, and (2) connecting the nodes by a modified advancing front followed by local transformation. The method creates a high‐quality anisotropic mesh that conforms well to a specified tensor field. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Local transformation, or topological reconnection, is one of the effective procedures for mesh improvement method, especially for three‐dimensional tetrahedral mesh. The most frequently used local transformations for tetrahedral mesh are so‐called elementary flips, such as 2‐3 flip, 3‐2 flip, 2‐2 flip, and 4‐4 flip. Owing to the reason that these basic transformations simply make a selection from several possible configurations within a relatively small region, the improvement of mesh quality is confined. In order to further improve the quality of mesh, the authors recently suggested a new local transformation operation, small polyhedron reconnection (SPR) operation, which seeks for the optimal tetrahedralization of a polyhedron with a certain number of nodes and faces (typically composed of 20–40 tetrahedral elements). This paper is an implementation of the suggested method. The whole process to improve the mesh quality by SPR operation is presented; in addition, some strategies, similar to those used in advancing front technique, are introduced to speed up the operation. The numerical experiment shows that SPR operation is quite effective in mesh improvement and more suitable than elementary flips when combined with smoothing approach. The operation can be applied to practical problems, gaining high mesh quality with acceptable cost for computational time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
An advancing front space‐filling technique for arbitrary objects has been developed. The input required consists of the specification of the desired mean point distance in space and an initial triangulation of the surface. One object at a time is removed from the active front, and, if possible, surrounded by admissible new objects. This operation is repeated until no active objects are left. Two techniques to obtain maximum packing are discussed: closest object placement (during generation) and move/enlarge (after generation). Different deposition or layering patterns can be achieved by selecting the order in which objects are eliminated from the active front. Timings show that for simple objects like spheres the scheme is considerably faster than volume mesh generators based on the advancing front technique, making it possible to generate large (> 106) yet optimal clouds of points in a matter of minutes on a PC. For more general objects, the performance may degrade depending on the complexity of the penetration checks. Several examples are included that demonstrate the capabilities of the technique. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The quality of any numerical flowfield solution is inextricably linked to the quality of the mesh used. It is normally accepted that structured meshes are of higher quality than unstructured meshes, but are much more difficult to generate and, furthermore, for complex topologies a multiblock approach is required. This is the most resource‐intensive approach to mesh generation, since block structures, mesh point distributions, etc., need to be defined before the generation process, and so is seldom used in an industrial design loop, particularly where a novice user may be involved. This paper considers and presents two significant advances in multiblock mesh generation: the development of a fast, robust, and improved quality interpolation‐based generation scheme and a fully automatic multiblock optimization and generation method. A volume generation technique is presented based on a form of transfinite interpolation, but modified to include improved orthogonality and spacing control and, more significantly, an aspect ratio‐based smoothing algorithm that removes grid crossover and results in smooth meshes even for discontinuous boundary distributions. A fully automatic multiblock generation scheme is also presented, which only requires surface patch(es) and a target number of mesh cells. Hence, all user input is removed from the process, and a novice user is able to obtain a high‐quality mesh in a few minutes. It also means the code can be run in batch mode, or called as an external function, and so is ideal for incorporation into a design or optimization loop. To demonstrate the power and efficiency of the code, multiblock meshes of up to 256 million cells are presented for wings and rotors in hover and forward flight. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The centroidal Voronoi tessellation based Delaunay triangulation (CVDT) provides an optimal distribution of generating points with respect to a given density function and accordingly generates a high‐quality mesh. In this paper, we discuss algorithms for the construction of the constrained CVDT from an initial Delaunay tetrahedral mesh of a three‐dimensional domain. By establishing an appropriate relationship between the density function and the specified sizing field and applying the Lloyd's iteration, the constrained CVDT mesh is obtained as a natural global optimization of the initial mesh. Simple local operations such as edges/faces flippings are also used to further improve the CVDT mesh. Several complex meshing examples and their element quality statistics are presented to demonstrate the effectiveness and efficiency of the proposed mesh generation and optimization method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Boundary‐layer meshes are important for numerical simulations in computational fluid dynamics, including computational biofluid dynamics of air flow in lungs and blood flow in hearts. Generating boundary‐layer meshes is challenging for complex biological geometries. In this paper, we propose a novel technique for generating prismatic boundary‐layer meshes for such complex geometries. Our method computes a feature size of the geometry, adapts the surface mesh based on the feature size, and then generates the prismatic layers by propagating the triangulated surface using the face‐offsetting method. We derive a new variational method to optimize the prismatic layers to improve the triangle shapes and edge orthogonality of the prismatic elements and also introduce simple and effective measures to guarantee the validity of the mesh. Coupled with a high‐quality tetrahedral mesh generator for the interior of the domain, our method generates high‐quality hybrid meshes for accurate and efficient numerical simulations. We present comparative study to demonstrate the robustness and quality of our method for complex biomedical geometries. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号