首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, morphology, and dynamic and mechanical properties of polypropylene–mica (PP–Mica) composites were investigated. To enhance the adhesion between PP and mica, maleic anhydride‐grafted PP (MAPP) and treated mica with silane coupling agent were used. MAPP (as a compatibilizer) and silane coupling agent (as a filler surface modifier) caused an interfacial bonding in the mica filled polypropylene composites. The effect of mica content, MAPP, and treated mica with silane coupling agent on the morphological properties were investigated by Scanning Electron Microscopy (SEM). The results showed that with increasing MAPP or silane coupling agent, dispersion of filler and adhesion between PP and filler were improved. Mechanical data showed that with increasing MAPP and mica treated with silane coupling agent, tensile modulus and flextural strength of composites were enhanced. Dynamic rheological behavior of composites was also investigated within the domain of linear viscoelasticity. The rheological observations indicated that the complex viscosity, storage and loss moduli increased, and tan δ decreased with increasing mica content. POLYM. COMPOS. 27:491–496, 2006. © 2006 Society of Plastics Engineers.  相似文献   

2.
Some results of experiments on the mechanical and rheological properties of mineral filled polypropylene were presented. Single filler and hybrid filler composites of talc and calcium carbonate (CaCO3) were prepared in a co‐rotating twin‐screw extruder. The effect of filler type, filler content, and coupling agent on the mechanical and rheological properties of the polypropylene were studied. The coupling agent was maleic anhydride‐grafted polypropylene (PP‐g‐MA). It was found that the mechanical properties are affected by filler type, filler concentration, and the interaction between filler and matrix. The tensile strength of the composite is more affected by the talc while the impact strength is influenced mostly by CaCO3 content. The elongation at break of PP/CaCO3 composites was higher than that of PP/talc composites. The incorporation of coupling agent into PP/mineral filler composites increased the mechanical properties. Rheological properties indicated that the complex viscosity and storage modulus of talc filled samples were higher than those of calcium carbonate filled samples while the tan δ was lower. The rheological properties of hybrid‐filler filled sample were more affected by the talc than calcium carbonate. The PP‐g‐MA increased the complex viscosity and storage modulus of both single and hybrid composites. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

3.
Three-component composites consisting of polypropylene (PP) matrix, poly(vinyl butyral) (PVB) modifier, and mica filler at various ratios of matrix to modifies and a constant mica content (30 wt %) were prepared by using two different kinds of PVB, viz., PVB and PVB-P. By correlating with the morphology, the dynamic mechanical and mechanical properties of the composites are studied in detail. PVB component in PP/PVB/mica composites cannot display a reinforcing effect to PP/mica binary composites, while impact strength of the composites are reduced further. It associates with incompatibility between PP and PVB, and as well as higher glass transition temperature of PVB. For PP/PVB-P/mica composites, stiffness decreases and, meanwhile, impact strength increases when PVB-P content is 7 wt %. The improvement of impact strength on PP/mica binary composites at the composition is due to a little affinity between the PP matrix and the plasticizer of PVB-P. Moreover, a minor amount of PP-g-MA in the 63/7/30 PP/PVB/mica composites only acts as an adhesion promoter. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2003–2011, 1997  相似文献   

4.
This paper reports a study of the effect of variable viscosity, expressed as an inverse linear function of temperature, on the free convective heat and fluid flow past a vertical isothermal cone. By similarity analysis together with the boundary layer assumptions, this complex problem is reduced to a system of coupled nonlinear ordinary differential equations. The resultant boundary layer equations are integrated numerically to obtain the flow field and the temperature distribution for selected influence parameters such as the viscosity parameter θ r and the Prandtl number Pr. The viscosity parameter θ r plays a prominent role in both flow field and heat transfer. In this paper, θ r relates to the reciprocal of the temperature difference between the heated surface and the ambient. The calculated results indicate that some variations will be introduced in the heat transfer rate as well as the skin friction coefficient.  相似文献   

5.
The present study was carried out to determine the filler characteristics and to investigate the effects of three types of mineral fillers (CaCO3, silica, and mica) and filler loadings (10–40 wt%) on the properties of polypropylene (PP) composites. The characteristics of the particulate fillers, such as mean particle size, particle size distribution, aspect ratio, shape, and degree of crystallinity were identified. In terms of mechanical properties, for all of the filled PP composites, Young's modulus increased, whereas tensile strength and strain at break decreased as the filler loading increased. However, 10 wt% of mica in a PP composite showed a tensile strength comparable with that of unfilled PP. Greater tensile strength of mica/PP composites compared to that of the other composites was observed because of lower percentages of voids and a higher aspect ratio of the filler. Mica/PP also exhibited a lower coefficient of thermal expansion (CTE) compared to that of the other composites. This difference was due to a lower degree of crystallinity of the filler and the CTE value of the mica filler. Scanning electron microscopy was used to examine the structure of fracture surfaces, and there was a gradual change in tensile fracture behavior from ductile to brittle as the filler loading increased. The nucleating ability of the fillers was studied with differential scanning calorimetry, and a drop in crystallinity of the composites was observed with the addition of mineral filler. Studies on the hybridization effect of different (silica and mica) filler ratios on the properties of PP hybrid composites showed that the addition of mica to silica‐PP composites enhanced their tensile strength and modulus. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

6.
Two kinds of different size calcium carbonates are blended and filled into polypropylene in 30 wt%. The melting viscosity of PP composites samples is measured by capillary extrusion rheometer at 230°C. The results show that the melt viscosity of PP composites evidently decreased when that was filled with the blending 325 and 1,500 mesh CaCO3 and the 1,500 mesh proportion in fillers was from 20 to 60 wt%. The viscosity in the low shear velocity decreased more than that in the high shear velocity. The shear viscosity of single filler and filler samples with the size distribution at the different temperature was studied by capillary extrusion rheometer. The results show that the flow activation energy and the flow activation entropy of composites filled with the size distribution filler increased. The change of the flow activation entropy and the model of the efficient arrangement of the structure are used to explain the phenomenon in melting viscosity decrease of PP filled with the size distribution fillers. A structural model of composites that filled with the size distribution fillers was set up. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
This research deals with the melt rheology of isotactic polypropylene (iPP) reinforced with short glass fibers (SGF) coated with electrically conductive polyaniline (PAn). Composites containing 10, 20, and 30 wt % PAn‐SGF were studied. Moreover, a composite of 30 wt % PAn‐SGF was also prepared with a blend of iPP and PP‐grafted‐maleic anhydride (iPP/PP‐gMA). The composites showed linear viscoelastic regime at small strain amplitudes. The onset of nonlinearity decreased as the concentration of filler increased. The time‐temperature superposition principle applied to all composites. The filler increased the shear moduli (G′, G″) and the complex viscosity η*. Steady‐state shear experiments showed yield stress for the composites with 20 and 30 wt % PAn‐SGF. Strikingly, the 10 wt % composite showed higher steady state viscosity than the 20 wt %. Rheo‐optics showed that shear induced disorder of microfibers at a concentration of 10 wt %. However, at 20 wt % concentration shear aligned the microfibers along the flow axis, this would explain the anomalous steady state viscosity values. The viscosity exhibited a shear thinning behavior at high shear rates for all composites. Creep experiments showed that the filler induced greater strain recovery in the composites and that the amount of strain recovery increased as the PAn‐SGF concentration increased. However, the enhancement of strain recovery (as well as shear viscosity) was more significant when using the iPP/PP‐gMA blend, suggesting greater adhesion between this matrix and the filler PAn‐SGF. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The oscillatory shear rheological properties, mechanical performance, shrinkage, and morphology of polypropylene (PP)‐talc composites chemically coupled by maleic‐anhydride‐grafted polypropylene (MAPP) were studied. The samples were prepared in a co‐rotating L/D = 40, 25 mm twin‐screw extruder. Tensile tests carried out on injection‐molded samples showed a reinforcing effect of talc up to 20 wt% on PP. Upon using MAPP, the mechanical performance of PP‐30% talc showed a maximum of about 10% increase in tensile strength at 1.5 wt% of MAPP. A Newtonian plateau (η0) at the terminal zone was observed for the complex viscosity curve of pure PP and PP‐talc composites plotted against frequency up to 30 wt%. Upon increasing the talc content to 40 and 50 wt%, the complex viscosity at very low shear rates sharply increased and showed yield behavior that might be due to the formation of a network of filler agglomerates in the melt. Analysis of viscosity behavior in the power‐law region revealed that the flow behavior index‐n‐decreased from 0.45 for 10 wt% of talc down to about 0.4 for 40 wt% of talc. Upon increasing the talc content to 50 wt%, n decreased to a value even lower than that of the neat PP resin. The frequency of the crossover point represents molecular mobility and relaxation‐time behavior. The crossover frequency of the composites was nearly constant up to 30 wt% of talc and decreased at higher filler loadings. The optimum amount of coupling agent could be correlated with the minimum point in crossover frequency and crossover modulus. The shrinkage behavior of the composites with and without MAPP resin was studied and correlated with the rheological properties. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
The dynamic moduli of isotactic polypropylene (PP) filled with ultrafine SiO2 and micron sized glass particles are measured in the temperature range 30–130°C at frequency 10 Hz. The storage moduli of PP composites, E′c, increase with filler content and decreasing filler size in the whole range of temperature. The loss moduli of PP composites, E″c, increase with filler content and decreasing filler size above 40°C. The intensity of the broad despersion which appears at ca. 60°C increases with filler content and decreasing filler size. By assuming that the energy is not dissipated in the effective volume, namely, filler volume plus that of immobilized interfacial region, the effective volume fraction is evaluated from the relative loss modulus, E″cE″0 at 60°C. The effective volume fraction increases with filler content and decreasing filler size. The effect of addition of ultrafine particles on the broad dispersion at ca. 60°C resembles the effect of increasing crystallinity of pure PP. It is concluded that the broad dispersion which appeared at ca. 60°C seemed to be assigned to the grain boundary of PP composities or crystalline boundary of pure PP.  相似文献   

10.
Heat transfer coefficients were investigated by insertion of a probe into melting polymers under laminar flow at 200–240°C and a flow velocity of 0.5–2.7 mm/sec. The average heat transfer coefficients of melting polypropylene (PP) and polystyrene (PS) were found to be 160–220 W/m·°C and 180–270 W/m·°C, respectively. These coefficients show remarkable dependence on flow velocity, and the average heat transfer coefficient of PS is about 13%–23% higher than that of PP. When the flow velocity of flowing melting PP and PS exceeds about 0.078mm/sec, heat transfer by convection becomes dominant, whereas under lower flow velocities, since the equivalent conduction layer thickness δ′ in which the quiescent state without flow approaches infinity, heat transfer by conduction becomes dominant. The Prandtl number (Pr) and Nusselt number (Nu) of melting PP are 125–133 × 106 and 38.6–51.4, respectively, and those of melting PS are 63–64 × 106 and 42.3–61.3. In the case of constant flow velocity, the Peclet number (Pe) and Stanton number (St) are dependent on the specific heat of melting polymer. Polym. Eng. Sci. 44:423–432, 2004. © 2004 Society of Plastics Engineers.  相似文献   

11.
The application of titanate coupling agents for the surface modification of mica filler and its reinforcement in polypropylene (PP) has been directed towards improvement in mechanical properties. Four titanate coupling agents, namely neoalkoxy tri(dioctylpyrophosphato) titanate (C1), neoalkoxy trineodecanoyl titanate (C2); bis-(acetylacetonato)distearato titanate (C3), and bis-(acetylacetonato)dipalmitato titanate (C4) were used in the present investigation. Mica powder (10 μm particle size) was coated with these coupling agents of varying concentration (0.5 to 1 % on the weight of filler) and then blended with polypropylene powder of 10 melt flow index. The mica (10 to 50 wt. %) filled polypropylene samples with and without coupling agents, were injection molded and the mechanical properties of the specimens tested. There is an improvement in the tensile, flexural, and impact strength of PP/mica samples coupled with titanates. The best performance in terms of yield stress and flexural strength was observed in PP/mica samples having 0.7% C1, titanate coupling agent. The fracture behavior of mica filled PP has also been studied using a scanning electron microscope.  相似文献   

12.
The wide applications of indirect heating and cooling processes have opened scope for various researchers to explore in-depth analysis and applications of systems involving heat exchange processes. This paper targets the analysis and visualization of heat transfer in entrapped triangular cavities within adjacent square tubes forming a system of practical application especially in pollution control with hot fluid flowing through the stack and entrapped cold fluid confined within the triangular cavities. Also, efficient heat recovery has been examined for the entrapped fluid in the system. The parameters for this study are the Prandtl number (Pr), Rayleigh number (Ra) and Nusselt number (Nu). Complete details of heating patterns in both triangular cavities have been analyzed with heatline approach for visualization of heat flow. At low Rayleigh number, it is found that the heatlines are smooth and perfectly normal to the isotherms indicating the dominance of conduction for both the triangles. But as Ra increases, flow slowly becomes convection dominant. Multiple secondary circulations within the upper triangle are formed for fluids with low Pr, whereas this is absent in higher Pr fluids. Multiple circulation cells for smaller Pr also correspond to multiple cells of heatlines which illustrate less thermal energy transport from hot wall. On the other hand, the dense heatlines at bottom wall display enhanced heat transport for larger Pr. But interestingly for lower triangle there is hardly any variation of patterns with the increase in Prandtl number in the system. Analysis is concluded with the average Nusselt number plots. It is found that fluid with higher Pr may be recommended for upper triangle, but fluid with all ranges of Pr may be used for lower triangle.  相似文献   

13.
螺旋半圆管夹套内充分发展层流流动与换热特性   总被引:3,自引:3,他引:0       下载免费PDF全文
李雅侠  王航  吴剑华 《化工学报》2010,61(11):2796-2803
根据螺旋半圆管夹套的结构特点,提出了简化的物理模型;采用数值方法求解了恒定热负荷条件下夹套内流体充分发展的层流流场和温度场,并与激光多普勒测速仪测得的速度场和已有的传热实验结果进行了对比。研究了夹套的结构和换热流体Prandtl数Pr对夹套内流体流动及换热特性的影响。结果表明:层流状态下,夹套管的横截面上存在两涡结构的二次流;随着曲率k的增大,二次流函数值增大,二次涡的强度增强,流动阻力增加。二次流对夹套内的换热起强化作用,k值越大,换热流体的Pr越小,二次流的相对强化换热作用越明显。增大k或Pr可以强化夹套内的换热,但强化效果不同;夹套内换热面的中心部位是需要强化换热的重点部位。  相似文献   

14.
This article presents study of melt rheological properties of composites of polypropylene (i-PP) filled with wood flour (WF), at filler concentrations of 3–20 wt%. Results illustrate the effects of (i) filler concentration and (ii) shear stress or shear rates on melt viscosity and melt elasticity properties of the composites. Incorporation of WF into i-PP results in an increase of its melt viscosity and a decrease of melt elasticity such as die swell and first normal stress differences; these properties, however, depend on filler concentration. Processing temperature of the filled i-PP increases as compared to the nonfilled polymer.  相似文献   

15.
Laminar mixed convection in the thermal entrance region of horizontal isothermal rectangular channels for moderate and small Prandtl number (air) is investigated using the vorticity-velocity formulation of the Navier-Stokes equation. The numerical results, including the cross-stream velocity vectors, local Nusselt numbers and local friction factor ratios are presented for the aspect (width/height) ratios 0.5, 1.0 and 2.0, Rayleigh numbers 0 ~ 2 × 105 and Prandtl numbers 0.7, 5.0 and 100. The strength and pattern of the secondary flow induced by buoyancy effects is found to depend on the magnitude of Rayleigh number and aspect ratio, and the secondary flow leads to a significant enhancement of heat transfer in the entrance region. The classical Graetz problem is shown to be a limiting case which applies only when Ra ≤ 10.3 The behavior of the local Nusselt number for Pr = 100 compares well with the existing results for Pr → ∞.  相似文献   

16.
Commercial stearic acid treated calcium carbonate (CaCO3) was used to make a comparative study on rheological behavior of the CaCO3 and talc‐filled polypropylene (PP) hybrid composites with nontreated filler. Apparent shear viscosity and extrudate swell were investigated with variation of filler ratio and temperature with 30% by weight total of filler was used in PP composite. The Shimadzu capillary rheometer was used to evaluate shear viscosity and shear rate of the composite. It was found that the shear viscosities decrease with increasing shear rate. The apparent shear viscosity of the composite containing the stearic acid treated is slightly lower than untreated filler. Shear thickening behavior at higher shear rate has also shown by 15/15 treated composites at higher temperature about 220°C and investigation by SEM has proved that filler being densely packed at that condition. Treated composites also exhibit lower swelling ratio value than untreated composite, and swelling ratio also decreases linearly with increasing temperature and the die length–diameter ratio. It is believed that dispersion of filler play an important role not only on shear viscosity but also on swelling ratio of PP composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5421–5426, 2006  相似文献   

17.
Hydrophobic mica particles were prepared by piranha solution activation, silanization, and copolymerization with acrylate monomers. Its surface morphology, hydrophilic properties, and thermogravimetric analysis changed differently in comparison with those of pristine mica. Scanning electron microscopy (SEM) showed that the modified (001) mica surface changed from flat to coarse. Thermogravimetric curves demonstrated that silane coupling agents and the grafted polymer were anchored on the modified‐mica surface. The alternating surface polarity state was verified by different dispersion performances in the solvents. SEM images showed that the polypropylene (PP)/modified‐mica composites had a better quality compatibility than the PP/untreated‐mica composites. The PP/polymer‐grafted‐mica composites had improved mechanical properties, including stretching, tension, and impact properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44985.  相似文献   

18.
Ink‐eliminated sludge flour (IESF), a waste residue from the recycling treatment of waste paper, is a promising new kind of filler for thermoplastic polymers with a good price/performance ratio and advantages for environmental protection. In this study, high‐impact polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were chosen as a polymer matrix and a coupling agent, respectively, for the preparation of IESF/PP composites, and the structures and properties of the obtained composites were also investigated. The experimental results revealed that IESF not only induced the crystallization orientation of PP along the b axis but also had a restraining effect on the formation of the β phase during the recrystallization of PP from the melt; the addition of MAPP further strengthened this effect to some extent. In addition, the proper addition of MAPP was helpful for improving the thermal stability of the IESF/PP composites. With the strengthening of the interfacial interaction between the IESF and PP matrix by MAPP, the resultant efficient stress transfer from the PP matrix to the IESF particles led to increased tensile and flexural strength. However, the original greater rigidity of MAPP, with respect to PP, reduced the toughness of the composites and caused some negative effects on the impact strength and the elongation at break. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2320–2325, 2004  相似文献   

19.
Three types of mineral fillers—talc, calcium carbonate (CaCO3), and kaolin (10–40 wt % filler loadings)—were compounded with polypropylene (PP) with a twin‐screw extruder. The composites were injection‐molded, and the effects of the filler loading on the mechanical, flow, and thermal properties for the three different types of filled composites were investigated. The aim was to compare their properties and to deduce prospective filler combinations that would yield hybrid PP composites in following studies. The results showed that in most cases, the strength and stiffness of the talc‐filled PP composites was significantly higher than those of the CaCO3‐ and kaolin‐filled PP composites. However, CaCO3, being a nonreactive filler, increased the toughness of PP. The kaolin‐filled PP composites also showed some improvement in terms of strength and stiffness, although the increases in these properties were not as significant as those of the talc‐filled PP composites. The effects of interfacial interactions between the fillers and PP on the mechanical properties were also evaluated with semiempirical equations. The nucleating ability of all three fillers was studied with differential scanning calorimetry, and the strongest nucleating agent of the three was talc, followed by CaCO3 and kaolin. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3315–3326, 2004  相似文献   

20.
To improve adhesion between polypropylene (PP) and mica in PP composites, acrylic acid (AA) is graft-copolymerized onto PP by a melt-mixing method. At the same time, applying a silane coupling agent to treat the surface of inorganic filler enhances the mechanical, thermal, and electrical properties, as well as decreases mold shrinkage and color difference of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号