首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly filled wood flour/recycled high density polyethylene (WF/RHDPE) composites were directly prepared by in situ reactive extrusion using a twin‐screw/single‐screw extruder system. The effects of dicumyl peroxide (DCP) content on extrusion pressure, rheological behavior, mechanical properties, fractured surface morphology of the composites, and melting temperature of RHDPE in the composites were investigated. The extrusion pressure and torque of WF/RHDPE composite melt increased with DCP content. Mechanical property tests and scanning electron microscopy analysis results confirmed that the interfacial interaction of the composites was improved by in situ reaction. The composites show lower melting peak temperature (Tm) than RHDPE. The cooling in profile extrusion shortened the crystallization time, resulting in decrease of crystalline order of RHDPE in the composites. There are no noticeable changes of Tm values with increasing DCP content. Comparative study on composites with maleic anhydride grafted polyethylene as compatibilizer demonstrated that mechanochemical treatment with DCP and maleic anhydride was an effective method to improve interfacial adhesion for WF/RHDPE composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Multi‐monomer grafted copolymers, high‐density polyethylene‐grafted‐maleic anhydride‐styrene (HDPE‐g‐(MAH‐St)) and polyethylene wax‐grafted‐ maleic anhydride ((PE wax)‐g‐MAH), were synthesized and applied to prepare high‐performance high‐density polyethylene (HDPE)/wood flour (WF) composites. Interfacial synergistic compatibilization was studied via the coordinated blending of high‐density polyethylene‐grafted‐maleic anhydride (MPE‐St) and polyethylene wax‐grafted‐ maleic anhydride (MPW) in the high‐density polyethylene (HDPE)/wood flour (WF) composites. Scanning electron microscopy (SEM) morphology and three‐dimensional WF sketch presented that strong interactive interface between HDPE and WF, formed by MPE‐St with high graft degree of maleic anhydride (MAH) together with the permeating effect of MPW with a low molecular weight. Experimental results demonstrated that HDPE/WF composites compatibilized by MPE‐St/MPW compounds showed significant improvement in mechanical properties, rheological properties, and water resistance than those compatibilized by MPE, MPE‐St or MPW separately and the uncompatibilized composites. The mass ratio of MPE‐St/MPW for optimizing the HDPE/WF composites was 5:1. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42958.  相似文献   

3.
This article presents an experimental study on the change in the properties of wood–plastic composites (WPCs) when reprocessed. The degree of properties degradation upon reprocessing, for recycling purpose, can be considered as a key factor to choose an alternative against discarding into the environment. A material which retains its properties when recycled, or at least exhibits insignificant reduction in its properties, is favorable in environmental point of view. To investigate the reprocessing effect on the WPC properties, in this study, cylindrical profiles of WPC, with 60 wt% of wood content, were produced using a twin screw extruder, at first stage (virgin WPC). These profiles were then chopped into granules and used in the reproduction of the same shaped product (recycled WPC). For the measurement of mechanical properties, tensile and three‐point bending tests were conducted. Differential scanning calorimetry (DSC) test was performed to compare thermal behavior of the neat HDPE, virgin and recycled composites. Scanning electron microscopy (SEM) images were also produced to observe the adhesion quality of the components and changes in wood particles size. Physical properties such as density and water uptake were also measured. A reduction in strength was observed upon recycling which was accompanied with the decrease in density, while an increase in the flexural modulus was noticed. The results also indicate that the recycled samples exhibit a higher water uptake. Analysis of thermal behavior showed a slight increase in the melting temperature of the reprocessed composite and decrease in the degree of crystallinity especially at the first stage of the HDPE process. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
Composites of poly(lactic acid) with wood flour which was grafted by melt extruding with methyl acrylate in the presence of benzoyl peroxide (BPO) were investigated. The modification of filler (WF-g-PMA) was carried out to enhance the filler-matrix interactions, while the treated component was characterized by infrared spectrum. Properties of binary (PLA/WF, PLA/WF-g-MA) composites were analyzed as a function of the grafting monomer amount by scanning electron microscopy, differential scanning calorimeter, thermogravimetric analysis, water absorption and mechanical tests. Compared with the untreated system (PLA/WF), all treated composites showed higher interfacial compatibility as a result of chemical bonding between WF and grated monomer. All composites showed higher tensile modulus and lower strength and elongation at break as compared to pure PLA; grafting modification with methyl acrylate led to an increased stiffness and decreased water absorption of the composites because of an enhanced filler-matrix interfacial compatibility.  相似文献   

5.
Foaming of wood fiber/plastic composites (WPC) with a fine‐celled structure can offer benefits such as improved ductility and impact strength, lowered material cost, and lowered weight, which can enhance their utility in many applications. Although a great deal of attention is now being focused on these composites in the scientific literature, there are still numerous aspects of WPC processing that need elucidation. In this context, this article investigates the effects of wood fiber (WF) size on fine‐celled extrusion foaming of WPC in terms of cell size, cell size distribution, and foam density. The effects of WF size and coupling agent content on the viscosity of WPC are also investigated. The experimental results revealed that the small‐sized WF provides a better cell morphology, a smaller cell size, and a better cell uniformity in WPC foams. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The nonisothermal crystallization behavior and melting characteristics of high‐density polyethylene (HDPE) in HDPE/teak wood flour (TWF) composites have been studied by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD) methods. Composite formulations of HDPE/TWF were prepared by varying the volume fraction (?f) of TWF (filler) from 0 to 0.32. Various crystallization parameters evaluated from the DSC exotherms were used to study the nonisothermal crystallization behavior. The melting temperature (Tm) and crystallization temperature (Tp) of the composites were slightly higher than those of the neat HDPE. The enthalpy of melting and crystallization (%) decrease with increase in the filler content. Because the nonpolar polymer HDPE and polar TWF are incompatible, to enhance the phase interaction maleic anhydride grafted HDPE (HDPE‐g‐MAH) was used as a coupling agent. A shift in the crystallization and melting peak temperatures toward the higher temperature side and broadening of the crystallization peak (increased crystallite size distribution) were observed whereas crystallinity of HDPE declines with increase in ?f in both DSC and WAXD. Linear correlations were obtained between crystallization parameters and tensile and impact strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Highly filled systems prepared by compression molding of Hevea brasiliensis woodflour filled polybenzoxazine composites with high mechanical properties and reduced water uptake has been developed. The effects of percent filler content and particle size of woodflour on the obtained composite's properties were examined. The low melt viscosity of BA‐a type polybenzoxazine allows substantial amount of woodflour to be easily incorporated into the composites. The results showed that mechanical properties from dynamic mechanical analysis and flexural test at filler content below the optimum filler packing show approximately linear relationship with filler loading. The outstanding compatibility between the woodflour and the polybenzoxazine matrix is evidently seen from the large improvement in the composite's Tg and char yield. Scanning electron micrographs of the composite also reveals substantially strong interface between the woodflour filler and the polybenzoxazine matrix. Water absorption of the composites is greatly reduced with increasing the amount of polybenzoxazine due to the inherent low water absorption of the matrix. The polybenzoxazine is; therefore, a highly attractive candidate as high performance lignocellulosic binder or adhesive and other related applications. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1240–1253, 2006  相似文献   

8.
MA modified wood flour/PLA composites were prepared by one‐step reactive extrusion, in which wood flour and poly(lactic acid) (PLA) were used as raw material, maleic anhydride (MA) was used as modifier, and dicumyl peroxide (DCP) was used as initiator. The influences of MA concentration on the morphology, thermal stability, rheological, and mechanical properties of the composites were studied. The addition of MA improved the compatibility of the composites significantly. The thermal and rheological results showed that with the increase of the concentration of MA, the thermal stability of the composites decreased, the storage modulus and complex viscosity of the composites also decreased. The MA modified composites had an enhanced mechanical strength compared to the unmodified one. As the concentration of the MA increased, the tensile and flexural strength of the composites first increased and then decreased, and reached a maximum when the concentration of MA was 1 wt %. The MA modified composites showed a better water resistance than the unmodified ones. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43295.  相似文献   

9.
In this article, the flexural fatigue behavior of wood flour filled polypropylene (PP) composite samples was investigated, and a probabilistic approach is presented to evaluate the fatigue reliability. A nondimensional analysis was adopted to establish a prediction equation for the fatigue life of the composites, and the S‐N curves and survivability diagrams are then constructed to evaluate the fatigue reliability for the wood plastic composites. The predicted results in the nondimensional fatigue model are better related to the testing data than the general S‐N curve, and they could be used as the predictive model for fatigue life analysis of the wood plastic composites. The best‐fit S‐N curve and its corresponding bounds based on 95% confidence are provided, and the fatigue data are well distributed within a 95% confidence range. A two‐parameter Weibull distribution function is used to analyze statistically the fatigue life test results of composite samples based on the probability of survival concept which is proposed to incorporate the probability of survival and the fatigue life time of the composites at a specified lifetime. Weibull graphics are plotted for the composite samples used in the fatigue test, and the S‐N curves are then drawn for different reliability index (RI) of 0.01, 0.1, 0.5, 0.9, 0.99, and 0.368 using these data. These S‐N curves are introduced for the identification of the first failure time as reliability and safety limits. It is shown that the nondimensional fatigue model and two‐parameter probability distribution model can be used successfully for reliability evaluation and lifetime estimation of wood plastic composites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

10.
ABSTRACT

In this work, subcritical fluids are applied to twin-screw extruders as a novel design for the preparation of wood flour/polystyrene composites. Subcritical fluids have suitable process conditions, excellent swellability and diffusibility. Therefore, the subcritical fluids in the extruder system can alleviate the thermal degradation of wood floor, reduce the viscosity of the resin and strengthen the mass transfer rate. Wood flour evenly distributed in the polystyrene matrix in the presence of subcritical n-propanol. The best adhesion between wood flour and PS is shown when 10?wt-% MAPS is added. MAPS was confirmed to be grafted onto wood flour. In addition, the thermal stability and crystallinity of wood flour and the composites are studied. Mechanical tests proved the effectiveness of subcritical fluids, particularly subcritical n-propanol, in improving the mechanical properties of the composites. The extrusion temperature and content of MAPS show optimum values at 190°C and 10%, respectively.  相似文献   

11.
Teak wood flour reinforced high density polyethylene and maize starch composites were prepared by using maleic anhydride grafted polyethylene as a compatibilizer. The mechanical properties (tensile and flexural) of all the composites increased after addition of 10%–40% teak wood flour into HDPE matrix. The complex viscosity (η*) was higher for all the composites at the low frequency, but decreased with increasing frequencies indicating a shear thinning behavior of the composites. The storage modulus and loss modulus increased for the composites compared to the HDPE at low frequencies. Damping factor peak of HDPE and composites showed high below 1 Hz, but the peak start decreasing with increasing above 1 Hz. The relaxation behavior of HDPE and the composites after incorporating teak wood flour, maize starch, and compatibilizer was obtained by Han plot. Biodegradability was enhanced with the incorporation of teak wood flour, maize starch into the composites. Appreciable water uptake and the thickness swelling for the composites indicating it's potential for interior, automobile and packaging applications.  相似文献   

12.
The effect of compounding method is studied with respect to the rheological behavior and mechanical properties of composites made of wood flour and a blend of two main components of plastics waste in municipal solid waste, low-density polyethylene (LDPE) and high-density polyethylene (HDPE). The effects of recycling process on the rheological behavior of LDPE and HDPE blends were investigated. Initially, samples of virgin LDPE and HDPE were thermo-mechanically degraded twice under controlled conditions in an extruder. The recycled materials and wood flour were then compounded by two different mixing methods: simultaneous mixing of all components and pre-mixing, including the blending of polymers in molten state, grinding and subsequent compounding with wood flour. The rheological and mechanical properties of the LDPE/HDPE blend and resultant composites were determined. The results showed that recycling increased the complex viscosity of the LDPE/HDPE blend and it exhibited miscible behavior in a molten state. Rheological testing indicated that the complex viscosity and storage modulus of the composites made by pre-mixing method were higher than that made by the simultaneous method. The results also showed that melt pre-mixing of the polymeric matrix (recycled LDPE and HDPE) improved the mechanical properties of the wood–plastic composites.  相似文献   

13.
采用一种操作简便且易于工业推广的方法对木粉进行疏水改性,具体过程为:将3种可热聚合的单体,即甲基丙烯酸甲酯(MMA)、甲基丙烯酸丁酯(BMA)和苯乙烯(St)均匀喷洒在木粉上,经过预热处理后,与配方中其他组分,如高密度聚乙烯(HDPE)和马来酸酐接枝聚乙烯(MAPE)等通过高速混合机混合均匀,采用双螺杆挤出机造粒后,注射制备木塑复合材料(WPC)样条,测试其力学性能。另外,考察了疏水改性对WPC接触角、维卡软化温度、洛氏硬度、吸水性能、热性能的影响规律。结果表明:疏水改性后WPC的接触角增大,木粉和HDPE的界面相容性改善,力学性能得到明显提高。其中,当MMA、BMA和St的添加量为3%时,WPC的力学性能最好,与疏水改性前相比,弯曲强度分别提高了17.3%、26.3%和27.5%,弯曲模量分别提高了24.4%、24.4%和26.0%,冲击强度分别提高了54.7%、57.7%和60.5%。 此外,疏水改性后WPC的维卡软化温度、洛氏硬度、耐水性和耐热性也得到改善。  相似文献   

14.
Tensile and impact properties of Neem bark flour (BF) containing high density polyethylene (HDPE) composites were studied at 0–0.26 volume fraction of filler. Tensile modulus and strength and breaking elongation decreased with increase in BF concentration. The decrease in tensile modulus and strength was attributed to the decrease in crystallinity of the polymer compared to the imposed mechanical restraint by the BF. Analysis of tensile strength data indicated formation of stress concentration in the interphase. Because of this stress concentration and the mechanical restraint, the elongation‐at‐break and Izod impact strength decreased. Use of a coupling agent, HDPE‐g‐MAH, brings about enhanced phase adhesion, increasing the tensile modulus and strength. Enhanced adhesion marginally lowers composite ductility at higher filler contents and aids stress transfer increasing the Izod impact strength inappreciably. Scanning electron microscopic studies indicated better dispersion of BF particles and enhanced interphase adhesion in presence of the coupling agent. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

15.
《Polymer Composites》2017,38(5):863-869
Water absorption and mechanical performance of the injection‐molded hybrid composites prepared from different ratios of two polymer blends (57 wt%), two compatibilizers (3 wt%), and two wood species (40 wt%) were investigated. The ratio of polypropylene and high‐impact polystyrene (HIPS) gradually increased in the blend (from 10 to 30 wt%). Styrene–ethylene–butylene–styreneblock copolymer and maleic anhydride‐grafted PP (MAPP) were used as compatibilizer (3 wt%). The shore D hardness of the PP/wood composites was improved by the incorporation of the HIPS. The HIPS/wood flour composites showed higher tensile modulus but lower tensile strength than the PP/wood composites. The water resistance of the PP/wood composites decreased with increasing HIPS content. POLYM. COMPOS., 38:863–869, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
This article presents an experimental study on the flow balance of an extrusion die for various wood flour (WF)/high‐density polyethylene (HDPE) compositions. Flow balancing, in the design of a thermoplastic extrusion die, is dependent on the material rheological properties so that a change in the material, in some cases, may result in a total redesign of the die. To investigate the importance of this particular effect, the flow balance of an extrusion die, with a U‐shaped profile having uneven wall thicknesses, was undertaken. The main feature of the die was an adjustable restrictor implemented for fine balancing similar to that employed in the slit dies. The rheological influence of wood plastic composites (WPCs) on the flow balance of the die via loading various WF contents, 40, 60, and 70% by weight, was experimentally investigated; flow balancing was performed via varying the height of the restrictor bar. Interestingly, the results showed that, for a high WF content (above 60%), the issue of flow balancing for an uneven wall thickness profile is much less complicated because of the plug flow behavior of the composite. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
In this study, the effect of Eucalyptus globulus wood (UE) used as a filler (5–20% w/w) on the physical and thermal properties of high-density polyethylene (HDPE) composites was evaluated. To improve the compatibility with HDPE, the wood was modified (TE) using crude glycerol derived from biodiesel production. The addition of 20% (w/w) of UE or TE led to more rigid and durable composite materials compared to neat HDPE (about 50 or 100% increase in tensile strength, respectively). Composites also revealed 55–75°C higher temperatures at maximal degradation rates. The advantageous behavior of TE over UE in composites was attributed to the improvement of surface morphology of modified wood and it is better compatibility with the HDPE as revealed by surface energy analysis. The changes in wetting behavior of HDPE and ensuing HDPE-TE composites (contact angles of ca 72 and 80°, respectively) explain the matrix-filler interactions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48619.  相似文献   

18.
In this article, high density polyethylene/styrene‐ethylene‐butylene‐styrene block copolymer blends (HDPE/SEBS) grafted by maleic anhydride (HDPE/SEBS‐g‐MAH), which is an effective compatibilizer for HDPE/wood flour composites was prepared by means of torque rheometer with different contents of maleic anhydride (MAH). The experimental results indicated that MAH indeed grafted on HDPE/SEBS by FTIR analysis and the torque increased with increasing the content of maleic anhydride and dicumyl peroxide (DCP). Styrene may increase the graft reaction rate of MAH and HDPE/SEBS. When HDPE/SEBS MAH was added to HDPE/wood flour composites, tensile strength and flexural strength of composites can reach 25.9 and 34.8 MPa in comparison of 16.5 and 23.8 MPa (without HDPE/SEBS‐g‐MAH), increasing by 157 and 146%, respectively. Due to incorporation of thermoplastic elastomer in HDPE/SEBS‐g‐MAH, the Notched Izod impact strength reached 5.08 kJ m?2, increasing by 145% in comparison of system without compatibilizer. That HDPE/SEBS‐g‐MAH improved the compatibility was also conformed by dynamic mechanical measurement. Scanning electron micrographs provided evidence for strong adhesion between wood flour and HDPE matrix with addition of HDPE/SEBS‐g‐MAH. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Poly (lactic acid) (PLA), a biodegradable aliphatic semicrystalline polyester was filled with 40 wt% spruce wood flour (WF), to produce composite materials. Hydrothermal treatment, as well as maleic anhydride, vinyltrimethoxysilane, and stearic acid surface treatments were applied. The influence of surface modifications for WF was tested in terms of thermal, mechanical, and viscoelastic properties. The recorded results show that in both, the untreated and treated PLA/WF composites, the rigid amorphous phase content has been enhanced. The presence of WF causes a stiffness increase of the PLA/WF composites, while damping factor was decreased. The effect of wood surface modifications on interfacial compatibility with PLA was estimated by dynamic fragility parameter m calculated according the Williams‐Landel‐Ferry equation. The incorporation of untreated WF increased dynamic fragility of PLA/WF composites markedly, whereas used silane, maleic anhydride and hydrothermal treatments lead to lower values of parameter m. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

20.
Effects of wood flour species and polyethylene grafted with maleic anhydride (MA‐PE) on mechanical properties and morphology and torque rheology of high density polyethylene (HDPE)/wood flour composites have been comparatively investigated. The results demonstrated that without compatbilizer, wood flour species exhibited little influence on mechanical properties. In the presence of MA‐PE, the mechanical properties were obviously increased. On the basis of the mechanical property data obtained from wood flour extracted by different methods, the extractant was an important factor affecting the mechanical properties. Manchurian ash and larch wood flours extracted by hot water presented almost the same mechanical properties, and larch wood flour was the most beneficial to enhance the mechanical properties. The scanning electron microscopy (SEM) and the atomic force microscopy (AFM) further confirmed that interfacial adhesion and dispersion of manchurian ash wood flour in composites were effectively improved by MA‐PE. The torque results demonstrated that the chemical reactions of maleic anhydride groups on MA‐PE with hydroxyl on cellulose in wood flour probably took place due to the increase of the equilibrium torque and the appearance of the torque peak, and larch wood flour was more beneficial to prepare the composites containing the higher wood flour content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号