首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three series of liquid‐crystalline‐cum‐photocrosslinkable polymers were synthesized from 4‐x‐phenyl‐4′‐(m‐methacryloyloxyalkyloxy)cinnamates (x = ? H, ? OCH3 and ? CN; m = 6, 8 and 10) by free radical solution polymerization using azobisisobutyronitrile as an initiator in tetrahydrofuran at 60 °C. All the monomers and polymers were characterized using intrinsic viscosity, and FTIR, 1H NMR and 13C NMR spectroscopy. The liquid crystalline behavior of these polymers was examined using a hot stage optical polarizing microscope. All the polymers exhibited liquid crystalline behavior. The hexamethylene spacer‐containing polymers exhibited grainy textures; in contrast, the octamethylene and decamethylene spacer‐containing polymers showed nematic textures. Differential scanning calorimetry data confirmed the liquid crystalline property of the polymers. Thermogravimetric analysis revealed that all the polymers were stable between 236 and 344 °C in nitrogen atmosphere and underwent degradation thereafter. As the methylene chain length increases in the polymer side‐chain, the thermal stability and char yield of the polymers decrease. The photocrosslinking property of the polymers was investigated using the technique of exposing the polymer solution to UV light and using UV spectroscopy. The crosslinking reaction proceeds via 2π–2π cycloaddition reactions of the ? CH?CH? of the pendant cinnamate ester. The polymers containing electron‐releasing substituents (? OCH3) showed faster crosslinking than the unsubstituted polymers and those containing electron‐withdrawing substituents (? CN). Copyright © 2007 Society of Chemical Industry  相似文献   

2.
Two series of cardo polyimides were prepared from 1,4‐bis(4‐fluorophthalimide)cyclohexane with different trans/cis ratios and phenolphthalein/o‐cresolphthalein via aromatic nucleophilic substitution reaction. The inherent viscosities of the synthesized polymers were found to be 0.55–0.66 dL g?1 in N,N′‐dimethylacetamide. The cardo polyimides showed excellent solubility in organic solvents, high glass transition temperatures (Tg) of 275–312 °C and moderate thermal stability with 5% weight loss temperatures (Td5%) of 415–441 °C in nitrogen and 370–436 °C in air. The polyimide films exhibited high optical transparency with cut‐off wavelengths of 350–355 nm and moderate mechanical properties. The different properties of the polymers caused by trans and cis configurations of 1,4‐diaminocyclohexane were also investigated. It was found that with an increasing content of trans configuration of 1,4‐diaminocyclohexane in the polyimide backbone, Tg of the polyimides increased as well as Td5%, while the solubility gradually decreased. The polyimide films had good optical transparency regardless of trans/cis configuration. © 2018 Society of Chemical Industry  相似文献   

3.
Two series of alicyclic polyimides composed of cis‐ and trans‐dicyclohexyl‐3,3′,4,4′‐tetracarboxylic dianhydrides (DCDAs) and aromatic diamines were prepared. All cis‐polymers could be readily prepared both in a one‐step method and a two‐step method. However, a two‐step method is preferably applied in the preparation of trans‐polymers, because in a one‐step method the trans‐configuration is partially lost at higher temperatures. These polyimide solutions could be cast into tough and flexible films, which were characterized by inherent viscosity, GPC, DSC, TGA measurements, and UV‐vis spectroscopy. The glass transition temperatures (Tg's) of the polymers were in the range of 210–270°C and the 5% weight loss temperatures were around 480°C for all PIs prepared. The optical transmittances of these films were more than 80% at 350 nm for ca. 15 μm thickness.  相似文献   

4.
A new series of liquid‐crystalline polymers with a polymer backbone of limonene‐co‐methyl methacrylate were synthesized and characterized, and the spacer length was taken to be nine methylene units. The chemical structures of the obtained olefinic compound and polymers were confirmed with elemental analysis and proton nuclear magnetic resonance spectroscopy. The thermal behavior and liquid crystallinity of the polymers were characterized with differential scanning calorimetry and polarized optical microscopy. The polymers exhibited thermotropic liquid‐crystalline behavior and displayed a glass‐transition temperature at 48°C. The appearance of the characteristic schlieren texture confirmed the presence of a nematic phase, which was observed under polarized optical microscopy. These liquid‐crystalline polymers exhibited optical activity. A comparison was also made with polyacrylates and polymethacrylate‐based materials. This revealed that the nature of the polymer backbone had a major effect on the liquid‐crystalline properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4595–4600, 2006  相似文献   

5.
New polyimides containing 4,4′‐bipyridinium units were synthesized by the reaction of bis(dichloromaleimide)arylene derivatives with 4,4′‐bipyridine in meta‐cresol. IR and 1H‐NMR spectroscopy and elemental analysis as well confirmed their structures. The polymers were characterized by viscometric measurements, softening points, and thermogravimetric data. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2091–2100, 2004  相似文献   

6.
New π‐conjugated polymers containing dithieno(3,2‐b:2′,3′‐d)pyrrole (DTP) were successfully synthesized via electropolymerization. The effect of structural differences on the electrochemical and optoelectronic properties of the 4‐[4H‐dithieno(3,2‐b:2′,3′‐d)pyrrol‐4‐yl]aniline (DTP–aryl–NH2), 10‐[4H‐dithiyeno(3,2‐b:2′,3′‐d)pirol‐4‐il]dekan‐1‐amine (DTP–alkyl–NH2), and 1,10‐bis[4H‐dithieno(3,2‐b:2′,3′‐d)pyrrol‐4‐yl] decane (DTP–alkyl–DTP) were investigated. The corresponding polymers were characterized by cyclic voltammetry, NMR (1H‐NMR and 13C‐NMR), and ultraviolet–visible spectroscopy. Changes in the electronic nature of the functional groups led to variations in the electrochemical properties of the π‐conjugated systems. The electroactive polymer films revealed redox couples and exhibited electrochromic behavior. The replacement of the DTP–alkyl–DTP unit with DTP–aryl–NH2 and DTP–alkyl–NH2 resulted in a lower oxidation potential. Both the poly(10‐(4H‐Dithiyeno[3,2‐b:2′,3′‐d]pirol‐4‐il)dekan‐1‐amin) (poly(DTP–alkyl–NH2)) and poly(1,10‐bis(4H‐dithieno[3,2‐b:2′,3′‐d]pyrrol‐4‐yl) decane) (poly(DTP–alkyl–DTP)) films showed multicolor electrochromism and also fast switching times (<1 s) in the visible and near infrared regions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40701.  相似文献   

7.
A new class of main‐chain liquid‐crystalline photodimerizable vanillylidene‐containing alkylpolyphosphate esters were synthesized from 2,5‐bis[m‐hydroxyalkyloxy(vanillylidene)] cyclopentanones with various alkylphosphoro‐ dichloridates by solution polycondensation in chloroform at ambient temperature. Their chemical structures were confirmed by FT‐IR, 1H, 13C and 31P NMR spectroscopic analysis. Dilute‐solution viscosity values were measured in order to obtain the intrinsic viscosities of the synthesized polymers. Mesogenic properties and phase behavior were investigated by the use of hot‐stage optical polarized microscopy and differential scanning calorimetry. Thermogravimetric analysis revealed that all of the polymers were stable up to 170–230 °C and decomposed with high char yields. The shorter methylene‐chain‐containing polymers did not show a liquid‐crystalline phase, while the longer methylene‐chain‐ containing polymers showed grainy and nematic textures. The Tg, Tm and Ti values of the polymers decreased with increasing flexible methylene chain length in the polymer backbones. The photocrosslinking properties of the polymers were studied by UV light/UV spectroscopy; the crosslinking proceeds via 2π–2π cycloaddition reactions of the vanillylidene exocyclic double bonds of the polymers. The rate of crosslinking was faster for the pendant ethoxy‐containing polymers than that of the pendant methoxy‐containing polymers. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Star‐shaped polymers are very attractive because of their interesting properties such as reduced viscosity, good solubility, low glass transition temperature and fast response to external stimuli. The incorporation of azobenzene moieties in star‐shaped polymers could significantly widen their potential applications in various optical devices. One of the most important properties of the azobenzene chromophore is its reversible transcis photoisomerization induced by UV or visible light. Photoisomerization induces conformational changes in azopolymer chains, which in turn lead to macroscopic variations in chemical and physical properties of the surroundings and media. RESULTS: This study reports the synthesis of azobenzene‐functionalized two‐, three‐ and four‐arm telomers via free radical telomerization using the di‐, tri‐ and tetrafunctional chain transfer agents 1,2‐ and 1,4‐benzenedimethanethiol, trimethylolpropane‐tris(2‐mercaptoacetate) and pentaerythritol‐tetrakis(3‐mercaptopropionate), respectively, in the presence of azobisisobutyronitrile. Azotelomers were characterized using gel permeation chromatography and 1H NMR and Fourier transform infrared spectroscopy. Thermal phase transition behaviors were investigated using differential scanning calorimetry and polarized optical microscopy. Azotelomers synthesized in this study showed reversible photoisomerization and a fast generation of birefringence. CONCLUSION: Considering the photoisomerization behavior and birefringence of the two‐, three‐ and four‐arm azotelomers, it can be concluded that they could be potential candidates for use in various optical devices. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Syntheses of novel liquid‐crystalline polymers containing azobenzene moieties were performed by a convenient route with an acrylate backbone. The azobenzenes were key intermediates of the monomers, and side‐chain liquid‐crystalline polymers were prepared, that is, poly[α‐{4‐[(4‐acetylphenyl)azo]phenoxy}alkyloxy]acrylates, for which the spacer length was 3 or 11 methylene units. In addition, poly[3‐{4‐[(3,5‐dimethylphenyl)azo]phenoxy}propyloxy]acrylate was prepared with a spacer length of 3 methylene units. The structures of the precursors, monomers, and polymers were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR techniques. The polymers were obtained by conventional free‐radical polymerization with 2,2′‐azobisisobutyronitrile as an initiator. The phase‐transition temperatures of the polymers were studied with differential scanning calorimetry, and the phase structures were evaluated with a polarizing optical microscopy technique. The results showed that two of the monomers and their corresponding polymers exhibited nematic liquid‐crystalline behavior, and one of the monomers and its corresponding polymer showed smectic liquid‐crystalline behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2653–2661, 2002  相似文献   

10.
A series of crosslinked liquid crystalline polymers and corresponding uncrosslinked liquid crystalline polymers were prepared by graft copolymerization. Their liquid crystalline properties were characterized by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The results showed that the crosslinking obtained in the isotropic state and the introduction of nonmesogenic crosslinking units into a polymeric structure could cause additional reduction of the clearing point (Ti) of the crosslinked polymers, compared with the corresponding uncrosslinked polymers. The crosslinked polymers (P‐2–P‐4) with a low crosslinking density exhibited cholesteric phases as did the uncrosslinked polymers. In contrast, a high crosslinking density made the crosslinked polymer P‐5 lose its thermotropic liquid crystalline property. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 773–778, 2004  相似文献   

11.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
A series of thermotropic side‐chain liquid‐crystalline ionomers (LCIs) containing 4‐(4‐alkoxybenzyloxy)‐4′‐allyloxybiphenyl (M) as mesogenic units and allyl triethylammonium bromide (ATAB) as nonmesogenic units were synthesized by graft copolymerization upon polymethylhydrosiloxane. The chemical structures of the polymers were confirmed by IR spectroscopy. DSC was used to measure the thermal properties of these polymers. The mesogenic properties were characterized by polarizing optical microscopy, DSC, and X‐ray diffraction. Homopolymers without ionic groups exhibit smectic and nematic mesophases. The nematic mesophases of the ionomers disappear and the mesomorphic temperature ranges decrease with increasing concentration of ionic units. The influence of the alkoxy chain length on clearing temperature (Tc) values of ionomers clearly shows an odd‐even effect, similar to that of other side‐chain liquid‐crystalline polymers. The mesomorphic temperature ranges increase with increasing alkoxy chain length when the number of alkoxy carbon is over 3. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2879–2886, 2003  相似文献   

13.
A blue‐light‐emissive fluorene‐based polyoxadiazole, an n‐type polyfluorene derivative, was synthesized by both one‐step and two‐step methods. Directly polymerized poly[(9,9′‐didodecylfluorene‐2,7‐diyl)‐alt‐(1,3,4‐oxadiazole‐2,5‐diyl)] (PFOx‐DP) exhibited a higher molecular weight and a more efficient photoluminescence quantum yield than poly[(9,9′‐didodecylfluorene‐2,7‐diyl)‐alt‐(1,3,4‐oxadiazole‐2,5‐diyl)] (PFOx) prepared via a polyhydrazide precursor, poly[9,9′‐didodecylfluorene‐2,7‐(2,5‐dihydrazide‐ 1,3,4‐oxadiazole). Both polymers, differently prepared, showed similar photoluminescent properties in 1,2‐dichloroethane. However, in a film state, the influence of the interchain interactions on the photoluminescence of PFOx with the lower molecular weight was larger than on the photoluminescence of PFOx‐DP. The electron‐deficient property of an oxadiazole group in the polymer backbone resulted in low‐lying highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of ?6.29 and ?3.26eV, respectively, of the polymer suitable for electron‐transport/hole‐blocking layers and emissive layers in multilayer electroluminescence devices. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3112–3118, 2004  相似文献   

14.
We report the preparation, photoisomerization properties, and three‐dimensional (3D) microstructure fabrication with two‐photon polymerization of crosslinked azo‐polymers. A series of bi‐acrylate‐substituted azobenzene derivatives were designed and synthesized as the monomers and/or crosslinkers of the crosslinked azo‐polymers. The doping concentration of the derivatives in pre‐polymer resins was significantly increased due to the introduction of bulky tert‐butyl and flexible alkyl chains. The double‐exponential dynamics of trans‐to‐cis photoisomerization of the azo‐polymers indicated the coexistence of different processes for the azobenzene moieties in the polymeric crosslinked networks. The crosslinked azo‐polymers exhibited ideal “on–off” switching performance in the highly reversible transcistrans isomerization cycles. Furthermore, we prepared a photoresist containing the azobenzene derivative for 3D microstructure fabrication based on two‐photon polymerization. A woodpile photonic crystal with a photonic bandgap at telecommunication wavelength region was successfully fabricated with the azobenzene‐containing photoresist, which would open the way for the design and manufacturing of miniature optical communication devices. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2947–2956, 2013  相似文献   

15.
Six novel polyureas were prepared from benzimidazolin‐2‐one and benzimidazolin‐2‐thione, which acted as hard segments, with two aromatic diisocyanates (4,4′‐diphenylmethane diisocyanate and toluene 2,4‐diisocyanate) and one aliphatic diisocyanate (hexamethylene diisocyanate). The polymers that formed were fully characterized with Fourier transform infrared spectroscopy, 13C‐NMR cross‐polarization/magic‐angle spinning, differential scanning calorimetry, and thermogravimetry. X‐ray diffraction revealed that the polymers contained crystalline and amorphous regions that varied with the nature of the backbone structures. All the polyureas were insoluble in common organic solvents, and this made it difficult to investigate their solution properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 576–583, 2006  相似文献   

16.
The synthesis of chiral side‐chain liquid‐crystalline polysiloxanes containing both cholesteryl undecylenate (MI) and 4‐allyloxy‐benzoyl‐4‐(S‐2‐ethylhexanoyl) p‐benzenediol bisate (MII) mesogenic side groups was examined. The chemical structures of the obtained monomers and polymers were confirmed with Fourier transform infrared spectroscopy or 1H‐NMR techniques. The mesomorphic properties and phase behavior of the synthesized monomers and polymers were investigated with polarizing optical microscopy, differential scanning calorimetry, and thermogravimetric analysis (TGA). Copolymers IIP–IVP revealed a smectic‐A phase, and VP and VIP revealed a smectic‐A phase and a cholesteric phase. The experimental results demonstrated that the glass‐transition temperature, the clearing‐point temperature, and the mesomorphic temperature range of IIP–VIP increased with an increase in the concentration of mesogenic MI units. TGA showed that the temperatures at which 5% mass losses occurred were greater than 300°C for all the polymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2670–2676, 2002  相似文献   

17.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

18.
A novel dianhydride, trans‐1,2‐bis(3,4‐dicarboxyphenoxy)cyclohexane dianhydride (1,2‐CHDPA), was prepared through aromatic nucleophilic substitution reaction of 4‐nitrophthalonitrile with trans‐cyclohexane‐1,2‐diol followed by hydrolysis and dehydration. A series of polyimides (PIs) were synthesized from one‐step polycondensation of 1,2‐CHDPA with several aromatic diamines, such as 2,2′‐bis(trifluoromethyl)biphenyl‐4,4′‐diamine (TFDB), bis(4‐amino‐2‐trifluoromethylphenyl)ether (TFODA), 4,4′‐diaminodiphenyl ether (ODA), 1,4‐bis(4‐aminophenoxy)benzene (TPEQ), 4,4′‐(1,3‐phenylenedioxy)dianiline (TPER), 2,2′‐bis[4‐(3‐aminodiphenoxy)phenyl]sulfone (m‐BAPS), and 2,2′‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]sulfone (6F‐BAPS). The glass transition temperatures (Tgs) of the polymers were higher than 198°C, and the 5% weight loss temperatures (Td5%s) were in the range of 424–445°C in nitrogen and 415–430°C in air, respectively. All the PIs were endowed with high solubility in common organic solvents and could be cast into tough and flexible films, which exhibited good mechanical properties with tensile strengths of 76–105 MPa, elongations at break of 4.7–7.6%, and tensile moduli of 1.9–2.6 GPa. In particular, the PI films showed excellent optical transparency in the visible region with the cut‐off wavelengths of 369–375 nm owing to the introduction of trans‐1,2‐cyclohexane moiety into the main chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42317.  相似文献   

19.
A series of poly(ester‐amide)s based on an ester group containing lithocholic acid derivative [3‐(3‐carboxypropionyl) lithocholic acid] and several aromatic diamines (naphthalene‐1,5‐diamine, 4,4′‐diaminodiphenyl ether, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenylsulfone, benzidine, m‐phenylenediamine, p‐phenylenediamine, and tetraphenylthiophene diamine) was synthesized and characterized by solubility, viscosity, IR, differential scanning calorimetry, thermogravimetric analysis, and optical microscopy. The polymers were soluble in most of the organic solvents and had inherent viscosities in the range of 0.21–0.38 dL/g. All the polymers exhibited a nematic mesophase, but only on shearing. Thermal transitions due to mesophase formation were not seen in the differential scanning calorimetry thermograms. However, the liquid crystalline character of the polymers was observed under an optical microscope. Thermogravimetric analyses revealed the maximum decomposition temperature was 390–435°C for these polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 73–80, 2006  相似文献   

20.
Photoresponsive polymer with azobenzene pendant group (PDMAA‐co‐PAPA) was synthesized by radical polymerization of N,N‐dimethylacrylamide (DMAA) and N‐4‐phenylazophenyl acrylamide (PAPA), and the characterization of the inclusion complexes of the PDMAA‐co‐PAPA with α‐cyclodextrin (α‐CD) were performed by FTIR, GPC, 1H NMR, 2D NOESY, and UV–vis spectroscopy. It was found that the solubility of PDMAA‐co‐PAPA and α‐CD inclusion complexes in aqueous solution showed tunable property, which could be triggered by alternating UV–vis light irradiation at a certain temperature due to the effect of molecular recognition of α‐CD with azobenzene moiety in the polymer. After UV irradiation, the lower critical solution temperature (LCST) of the polymer aqueous solution increased slightly without α‐CD while the LCST decreased sharply at presence of α‐CD. Furthermore, UV spectroscopy showed that the photoisomerization of the polymer solution went on rapidly and reversibly, and 2D NOESY data suggested that the inclusion complexation of α‐CD with trans azobenzene moiety and the decomplexation with cis azobenzene resulted in reversible solubility behavior when objected to UV and Vis light irradiation alternately. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号