首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new methodology is proposed for the topology optimization of fluid in Stokes flow. The binary design variable and no‐slip condition along the solid–fluid interface are regularized to allow for the use of continuous mathematical programming techniques. The regularization is achieved by treating the solid phase of the topology as a porous medium with flow governed by Darcy's law. Fluid flow throughout the design domain is then expressed as a single system of equations created by combining and scaling the Stokes and Darcy equations. The mixed formulation of the new Darcy–Stokes system is solved numerically using existing stabilized finite element methods for the individual flow problems. Convergence to the no‐slip condition is demonstrated by assigning a low permeability to solid phase and results suggest that auxiliary boundary conditions along the solid–fluid interface are not needed. The optimization objective considered is to minimize dissipated power and the technique is used to solve examples previously examined in literature. The advantages of the Darcy–Stokes approach include that it uses existing stabilization techniques to solve the finite element problem, it produces 0–1 (void–solid) topologies (i.e. there are no regions of artificial material), and that it can potentially be used to optimize the layout of a microscopically porous material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
This investigation focuses on an alternative approach to topology optimization problems involving incompressible materials using the P1‐nonconforming finite element. Instead of using the mixed displacement‐pressure formulation, a pure displacement‐based approach can be employed for finite element formulation owing to the Poisson locking‐free property of the P1‐nonconforming element. Moreover, because the P1‐nonconforming element has linear shape functions that are defined at element vertices, it has considerably fewer degrees of freedom than other quadrilateral nonconforming elements and its implementation is as simple as that of the conforming bilinear element. Various problems dealing with incompressible materials and pressure‐loaded structures found in published works are solved to verify the applicability of the proposed method. The application of the method is extended to the optimal design of fluid channels in the Stokes flow. This is done by expressing pressure in terms of volumetric strain rates and developing a velocity‐field‐only finite element formulation. The optimization results obtained from all the problems considered in this study are in close agreement with those found in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A two‐level domain decomposition method is introduced for general shape optimization problems constrained by the incompressible Navier–Stokes equations. The optimization problem is first discretized with a finite element method on an unstructured moving mesh that is implicitly defined without assuming that the computational domain is known and then solved by some one‐shot Lagrange–Newton–Krylov–Schwarz algorithms. In this approach, the shape of the domain, its corresponding finite element mesh, the flow fields and their corresponding Lagrange multipliers are all obtained computationally in a single solve of a nonlinear system of equations. Highly scalable parallel algorithms are absolutely necessary to solve such an expensive system. The one‐level domain decomposition method works reasonably well when the number of processors is not large. Aiming for machines with a large number of processors and robust nonlinear convergence, we introduce a two‐level inexact Newton method with a hybrid two‐level overlapping Schwarz preconditioner. As applications, we consider the shape optimization of a cannula problem and an artery bypass problem in 2D. Numerical experiments show that our algorithm performs well on a supercomputer with over 1000 processors for problems with millions of unknowns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
We present an alternative topology optimization formulation capable of handling the presence of stress constraints in a straightforward fashion. The main idea is to adopt a mixed finite‐element discretization scheme wherein not only displacements (as usual) but also stresses are the variables entering the formulation. By doing so, any stress constraint may be handled within the optimization procedure without resorting to post‐processing operation typical of displacement‐based techniques that may also cause a loss in accuracy in stress computation if no smoothing of the stress is performed. Two dual variational principles of Hellinger–Reissner type are presented in continuous and discrete form that, which included in a rather general topology optimization problem in the presence of stress constraints that is solved by the method of moving asymptotes (Int. J. Numer. Meth. Engng. 1984; 24 (3):359–373). Extensive numerical simulations are performed and ongoing extensions outlined, including the optimization of elastoplastic and incompressible media. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
We propose the use of high‐order weighted essentially non‐oscillatory interpolation and moving‐least‐squares approximation schemes alongside high‐order time integration to enable high‐order accurate particle‐in‐cell methods. The key insight is to view the unstructured set of particles as the underlying representation of the continuous fields; the grid used to evaluate integro–differential coupling terms is purely auxiliary. We also include a novel regularization term to avoid the accumulation of noise in the particle samples without harming the convergence rate. We include numerical examples for several model problems: advection–diffusion, shallow water, and incompressible Navier–Stokes in vorticity formulation. The implementation demonstrates fourth‐order convergence, shows very low numerical dissipation, and is competitive with high‐order Eulerian schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we propose a three‐dimensional (3D) grayscale‐free topology optimization method using a conforming mesh to the structural boundary, which is represented by the level‐set method. The conforming mesh is generated in an r‐refinement manner; that is, it is generated by moving the nodes of the Eulerian mesh that maintains the level‐set function. Although the r‐refinement approach for the conforming mesh generation has many benefits from an implementation aspect, it has been considered as a difficult task to stably generate 3D conforming meshes in the r‐refinement manner. To resolve this task, we propose a new level‐set based r‐refinement method. Its main novelty is a procedure for minimizing the number of the collapsed elements whose nodes are moved to the structural boundary in the conforming mesh; in addition, we propose a new procedure for improving the quality of the conforming mesh, which is inspired by Laplacian smoothing. Because of these novelties, the proposed r‐refinement method can generate 3D conforming meshes at a satisfactory level, and 3D grayscale‐free topology optimization is realized. The usefulness of the proposed 3D grayscale‐free topology optimization method is confirmed through several numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
We consider the problem of optimal design of nano‐scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean‐free path of the heat carriers, phonons in our case, becomes comparable with, or even larger than, the feature sizes of considered material distributions. A more accurate model at nano‐scales is given by kinetic theory, which provides a compromise between the inaccurate Fourier's law and precise, but too computationally expensive, atomistic simulations. We analyze the resulting optimal control problem in a continuous setting, briefly describing the computational approach to the problem based on discontinuous Galerkin methods, algebraic multigrid preconditioned generalized minimal residual method, and a gradient‐based mathematical programming algorithm. Numerical experiments with our implementation of the proposed numerical scheme are reported. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
An implicit a posteriori finite element error estimation method is presented to inexpensively calculate lower and upper bounds for a linear functional output of the numerical solutions to the three‐dimensional Navier–Stokes (N–S) equations. The novelty of this research is to utilize an augmented Lagrangian based on a coarse mesh linearization of the N–S equations and the finite element tearing and interconnecting (FETI) procedure. The latter approach extends the a posteriori bound method to the three‐dimensional Crouzeix–Raviart space for N–S problems. The computational advantage of the bound procedure is that a single coupled non‐symmetric large problem can be decomposed into several uncoupled symmetric small problems. A simple model problem, which is selected here to illustrate the procedure, is to find the lower and upper bounds of the average velocity of a pressure driven, incompressible, steady Newtonian fluid flow moving at low Reynolds numbers through an endless square channel which has an array of rectangular obstacles. Numerical results show that the bounds for this output are rigorous, i.e. always in the asymptotic certainty regime, that they are sharp and that the required computational resources decrease significantly. Parallel implementation on a Beowulf cluster is also reported. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
We present a method to process embedded smooth manifolds using sets of points alone. This method avoids any global parameterization and hence is applicable to surfaces of any genus. It combines three ingredients: (1) the automatic detection of the local geometric structure of the manifold by statistical learning methods; (2) the local parameterization of the surface using smooth meshfree (here maximum‐entropy) approximants; and (3) patching together the local representations by means of a partition of unity. Mesh‐based methods can deal with surfaces of complex topology, since they rely on the element‐level parameterizations, but cannot handle high‐dimensional manifolds, whereas previous meshfree methods for thin shells consider a global parametric domain, which seriously limits the kinds of surfaces that can be treated. We present the implementation of the method in the context of Kirchhoff–Love shells, but it is applicable to other calculations on manifolds in any dimension. With the smooth approximants, this fourth‐order partial differential equation is treated directly. We show the good performance of the method on the basis of the classical obstacle course. Additional calculations exemplify the flexibility of the proposed approach in treating surfaces of complex topology and geometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The computational bottleneck of topology optimization is the solution of a large number of linear systems arising in the finite element analysis. We propose fast iterative solvers for large three‐dimensional topology optimization problems to address this problem. Since the linear systems in the sequence of optimization steps change slowly from one step to the next, we can significantly reduce the number of iterations and the runtime of the linear solver by recycling selected search spaces from previous linear systems. In addition, we introduce a MINRES (minimum residual method) version with recycling (and a short‐term recurrence) to make recycling more efficient for symmetric problems. Furthermore, we discuss preconditioning to ensure fast convergence. We show that a proper rescaling of the linear systems reduces the huge condition numbers that typically occur in topology optimization to roughly those arising for a problem with constant density. We demonstrate the effectiveness of our solvers by solving a topology optimization problem with more than a million unknowns on a fast PC. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A new method of solving the Navier–Stokes equations efficiently by reducing their number of modes is proposed in the present paper. It is based on the Karhunen–Loève decomposition which is a technique of obtaining empirical eigenfunctions from the experimental or numerical data of a system. Employing these empirical eigenfunctions as basis functions of a Galerkin procedure, one can a priori limit the function space considered to the smallest linear subspace that is sufficient to describe the observed phenomena, and consequently reduce the Navier–Stokes equation defined on a complicated geometry to a set of ordinary differential equations with a minimum degree of freedom. The present algorithm is well suited for the problems of flow control or optimization, where one has to compute the flow field repeatedly using the Navier–Stokes equation but one can also estimate the approximate solution space of the flow field based on the range of control variables. The low-dimensional dynamic model of viscous fluid flow derived by the present method is shown to produce accurate flow fields at a drastically reduced computational cost when compared with the finite difference solution of the Navier–Stokes equation. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
In multi‐objective optimization, a design is defined to beit pareto‐optimal if no other design exists that is better with respect to one objective, and as good with respect to other objectives. In this paper, we first show that if a topology is pareto‐optimal, then it must satisfy certain properties associated with the topological sensitivity field, i.e. no further comparison is necessary. This, in turn, leads to a deterministic, i.e. non‐stochastic, method for efficiently generating pareto‐optimal topologies using the classic fixed‐point iteration scheme. The proposed method is illustrated, and compared against SIMP‐based methods, through numerical examples. In this paper, the proposed method of generating pareto‐optimal topologies is limited to bi‐objective optimization, namely compliance–volume and compliance–compliance. The future work will focus on extending the method to non‐compliance and higher dimensional pareto optimization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The objective of the present study is to show that the numerical instability characterized by checkerboard patterns can be completely controlled when non‐conforming four‐node finite elements are employed. Since the convergence of the non‐conforming finite element is independent of the Lamé parameters, the stiffness of the non‐conforming element exhibits correct limiting behaviour, which is desirable in prohibiting the unwanted formation of checkerboards in topology optimization. We employ the homogenization method to show the checkerboard‐free property of the non‐conforming element in topology optimization problems and verify it with three typical optimization examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we present a novel method for linking Navier–Stokes and Darcy equations along a porous inner boundary in a flow regime which is governed by both types of these equations. The method is based on a least-squares finite element technique and uses isoparametric C1 continuous Hermite elements for domain discretization. We show that our technique is superior to previously developed models for the combined Navier–Stokes/Darcy flows. The previous works use weighted residual finite element procedures in conjunction with C0 elements which are inherently incapable of linking Navier–Stokes and Darcy equations. The paper includes the application of our model to a geometrically complicated axisymmetric slurry filtration system.  相似文献   

16.
A two‐level nonoverlapping Schwarz algorithm is developed for the Stokes problem. The main feature of the algorithm is that a mixed problem with both velocity and pressure unknowns is solved with a balancing domain decomposition by constraints (BDDC)‐type preconditioner, which consists of solving local Stokes problems and one global coarse problem related to only primal velocity unknowns. Our preconditioner allows to use a smaller set of primal velocity unknowns than other BDDC preconditioners without much concern on certain flux conditions on the subdomain boundaries and the inf–sup stability of the coarse problem. In the two‐dimensional case, velocity unknowns at subdomain corners are selected as the primal unknowns. In addition to them, averages of each velocity component across common faces are employed as the primal unknowns for the three‐dimensional case. By using its close connection to the Dual–primal finite element tearing and interconnecting (FETI‐DP algorithm) (SIAM J Sci Comput 2010; 32 : 3301–3322; SIAM J Numer Anal 2010; 47 : 4142–4162], it is shown that the resulting matrix of our algorithm has the same eigenvalues as the FETI‐DP algorithm except zero and one. The maximum eigenvalue is determined by H/h, the number of elements across each subdomains, and the minimum eigenvalue is bounded below by a constant, which does not depend on any mesh parameters. Convergence of the method is analyzed and numerical results are included. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a level‐set‐based topology optimization method based on numerically consistent sensitivity analysis. The proposed method uses a direct steepest‐descent update of the design variables in a level‐set method; the level‐set nodal values. An exact Heaviside formulation is used to relate the level‐set function to element densities. The level‐set function is not required to be a signed‐distance function, and reinitialization is not necessary. Using this approach, level‐set‐based topology optimization problems can be solved consistently and multiple constraints treated simultaneously. The proposed method leads to more insight in the nature of level‐set‐based topology optimization problems. The level‐set‐based design parametrization can describe gray areas and numerical hinges. Consistency causes results to contain these numerical artifacts. We demonstrate that alternative parameterizations, level‐set‐based or density‐based regularization can be used to avoid artifacts in the final results. The effectiveness of the proposed method is demonstrated using several benchmark problems. The capability to treat multiple constraints shows the potential of the method. Furthermore, due to the consistency, the optimizer can run into local minima; a fundamental difficulty of level‐set‐based topology optimization. More advanced optimization strategies and more efficient optimizers may increase the performance in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper discusses the contribution of mesh adaptation to high‐order convergence of unsteady multi‐fluid flow simulations on complex geometries. The mesh adaptation relies on a metric‐based method controlling the L p‐norm of the interpolation error and on a mesh generation algorithm based on an anisotropic Delaunay kernel. The mesh‐adaptive time advancing is achieved, thanks to a transient fixed‐point algorithm to predict the solution evolution coupled with a metric intersection in the time procedure. In the time direction, we enforce the equidistribution of the error, i.e. the error minimization in L norm. This adaptive approach is applied to an incompressible Navier–Stokes model combined with a level set formulation discretized on triangular and tetrahedral meshes. Applications to interface flows under gravity are performed to evaluate the performance of this method for this class of discontinuous flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes an algorithm for the synthesis/optimization of microstructures based on an exact formula for the topological derivative of the macroscopic elasticity tensor and a level set domain representation. The macroscopic elasticity tensor is estimated by a standard multi‐scale constitutive theory where the strain and stress tensors are volume averages of their microscopic counterparts over a representative volume element. The algorithm is of simple computational implementation. In particular, it does not require artificial algorithmic parameters or strategies. This is in sharp contrast with existing microstructural optimization procedures and follows as a natural consequence of the use of the topological derivative concept. This concept provides the correct mathematical framework to treat topology changes such as those characterizing microstuctural optimization problems. The effectiveness of the proposed methodology is illustrated in a set of finite element‐based numerical examples.Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper deals with topology optimization of discretized continuum structures. It is shown that a large class of non‐linear 0–1 topology optimization problems, including stress‐ and displacement‐constrained minimum weight problems, can equivalently be modelled as linear mixed 0–1 programs. The modelling approach is applied to some test problems which are solved to global optimality. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号