首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan (degree of deacetylation of 90.2%) and N‐carboxymethylchitosan (N‐CMCh) (degree of substitution of 18.5%) were analyzed using thermogravimetric analysis in order to determine their thermal stability. Also, their films were evaluated using scanning electron microscopy (SEM) and mechanical and dynamic mechanical analysis (DMA). Both polymers showed a thermal degradation peak at Tm ~ 250 °C, with Tonset and weight loss of 175 °C and 62% and 190 °C and 35% for chitosan and N‐CMCh, respectively. N‐CMCh showed a second thermal degradation peak at Tm = 600 °C, with an additional weight loss of 25%. Kinetic thermal analysis showed a slower process of degradation at 100 °C for N‐CMCh compared with chitosan, and an activation energy 13 times higher for the former, confirming the higher stability of N‐CMCh. Analysis of chitosan and N‐CMCh films showed that the latter support a high tension, with lower elasticity, and, as revealed by DMA, N‐CMCh has a more compact film structure, with a crossing arrangement of N‐CMCh fibers, as compared with the chitosan films which were determined from SEM analysis to have fibers in one direction only. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
The thermal and mechanical properties of corn (maize) (CZ) films plasticized with poly(ethylene glycol) (PEG) of two different molar masses (400 and 1000 g mol−1) were studied using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), tensile strength, moisture absorption isotherms and water vapour transmission rate measurements. The glass transition temperature (Tg) of plasticized films is determined primarily by the amount of moisture contained in the film. DMTA data show contraction of films with loss of absorbed water during heating/cooling cycles. The moisture absorption behaviour of films plasticized with PEG400 and PEG1000 is similar at low relative humidities but significantly different at higher relative humidities. Incorporation of up to about 30 wt% PEG substantially enhances the tensile strength and the resistance to water vapour transmission of the protein film, and PEG1000 is more effective than PEG400. © 2000 Society of Chemical Industry  相似文献   

3.
Chitosan‐methyl cellulose based films which incorporatate vanillin as an antimicrobial agent and polyethylene glycol 400 (PEG) as a plasticizer were developed in this study. The effects of vanillin and plasticizer concentration on mechanical, barrier, optical, and thermal properties of chitosan‐methyl cellulose film were evaluated. When the vanillin concentration was increased at a given PEG level, film flexibility decreased while tensile strength increased slightly. Vanillin increased the barrier to oxygen but not water vapor. Increasing vanillin content resulted in less transparency and a more yellowish tint. The bulky nature of vanillin reduced film crystallization. When PEG concentration was increased at a given vanillin level, it resulted in greater film flexibility but reduced film strength. Water vapor permeability (WVP) and oxygen permeability (OP) increased with increase in PEG content. PEG contributed less to the opacity, yellowness, and crystallization of the film than did vanillin. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
《Polymer Composites》2017,38(7):1378-1389
In this study, the non‐isothermal crystallization kinetics of epoxy functionalized poly(hedral oligomeric silsesquioxane) (G‐POSS) reinforced plasticized or unplasticized poly(lactic acid) (PLA) was investigated. Poly(ethylene glycol) (PEG) was used as plasticizer at a constant content of 10% by weight. A micro‐compounder was used to prepare PLA/G‐POSS, PLA/PEG, and PLA/PEG/G‐POSS nanocomposites. G‐POSS content was varied as 1, 3, 7, and 10 wt%. Avrami, Ozawa, and combined Avrami‐Ozawa kinetic models were implemented to understand the non‐isothermal crystallization behavior of aforementioned nanocomposites. Moreover, the nucleation activity of G‐POSS particles was investigated in terms of Dobreva and Gutzow models. The data for kinetic analysis were obtained through differential scanning calorimeter. It was found that the crystallization rate of both plasticized and unplasticized PLA nanocomposites increased with the addition of G‐POSS. It was highlighted that G‐POSS is an effective nucleating agent for plasticized and unplasticized PLA nanocomposites. In parallel, these findings were in good agreement with activation energies obtained from Friedman model. In addition, all kinetic results were supported by polarized optical microscopy. POLYM. COMPOS., 38:1378–1389, 2017. © 2015 Society of Plastics Engineers  相似文献   

5.
The present study investigated the fabrication and characterization of bio-based sustainable films composed of a terrestrial plant raw material, namely Opuntia ficus-indica (OFI) cladodes powder (CP) and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the casted films was evaluated at four different contents, namely 30, 40, 50 and 60 wt%. The films present UV-blocking properties, as well as moderate mechanical performance, thermal stability, and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young's modulus, tensile strength, and water contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal, and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials.  相似文献   

6.
The development of packaging films based on renewable materials is an important and active area of research today. This is the first extensive study focusing on film‐forming properties of an agrobiomass byproduct, namely, oat spelt arabinoxylan. A plasticizer was needed for cohesive film formation, and glycerol and sorbitol were compared. The tensile properties of the films varied with the type and amount of the polyol. With a 10% (w/w) plasticizer content, the films containing glycerol had higher tensile strength than the films containing sorbitol, but with a 40% plasticizer content, the result was the opposite. Sorbitol‐plasticized films retained their tensile properties better than films with glycerol during 5 months of storage. The films were semicrystalline with similar crystallinity indices of 0.20–0.26. The largest crystallites (9.5 nm) were observed in the film with 40% glycerol. The softening of films with 40% (w/w) glycerol started at a significantly lower relative humidity (RH) than that of the corresponding sorbitol‐containing films. The films with sorbitol also had lower water vapor permeability (WVP) than the films with glycerol. The films plasticized with 10% (w/w) sorbitol had a WVP value of 1.1 g mm/(m2·d·kPa) at the RH gradient of 0/54%. The oxygen permeability of films containing 10% (w/w) glycerol or sorbitol was similar: 3 cm3·μm/(m2·d·kPa) at 50–75% RH. A higher plasticizer content resulted in more permeable films. Permeation of sunflower oil through the films was not detected. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Isolated corn hull arabinoxylan was dissolved in water and provided a clear solution. Plasticizer (glycerol, propylene glycol, or sorbitol) was added to the arabinoxylan solution at 0–20 wt % (film dry weight), which was cast into stable films. Film thickness ranged from 22 to 32 μm. Mechanical properties, moisture content, and water vapor permeability (WVP) were studied for the arabinoxylan‐based films as a function of plasticizer concentration. Measured data for the corn hull arabinoxylan–based films were 13–18 wt % moisture content, 10–61 MPa tensile strength, 365–1320 MPa modulus, 6–12% elongation, and 0.23–0.43 × 10?10 g m?1 Pa?1 s?1 water vapor permeability. Plasticized arabinoxylan films produced in this study had lower WVPs than those of unplasticized films, which is likely attributable to the phenomenon known as antiplasticization. Scanning electron micrographs showed a homogeneous structure on film surfaces. Films containing sorbitol had the best moisture barrier properties. When grapes were coated with arabinoxylan and arabinoxylan/sorbitol films, weight loss rates of the fruit decreased by 18 and 41%, respectively, after 7 days. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2896–2902, 2004  相似文献   

8.
Surface modified polyethylene (g‐PE), PMPC‐g‐PE, PGEMA‐g‐PE, PNIPAAm‐g‐PE and PHPMA‐g‐PE films with the water soluble polymers such as poly[2‐(methacryloyloxy)ethyl phosphorylcholine] (PMPC), poly[2‐(glucosyloxy)ethyl methacrylate] (PGEMA), poly(N‐isopropylacrylamide) (PNIPAAm) and poly[N‐(2‐hydroxypropyl) methacrylamide] (PHPMA) were prepared by graft copolymerization using an Ar plasma‐post polymerization technique. The surface of the g‐PE films was characterized by means of X‐ray photoelectron spectroscopy and the grafting percentage of PMPC, PNIPAAm and PHPMA was found to be 5.31, 2.83, and 3.40% for the corresponding g‐PE film. Biocompatibility of the g‐PE films was evaluated by the adsorption of serum proteins and the Michaelis constant (Km) for the enzymatic reaction of thrombin with synthetic substrate S‐2238 in the presence of g‐PE film. The biocompatibility of water soluble polymers such as PMPC, polyoxyethylene (POE), PGEMA, PNIPAAm and PHPMA was also evaluated by the same enzymatic reaction of thrombin with S‐2238 in their polymer solutions. The Km values in the presence of water soluble polymers was found to decrease in the order PMPC > POE > PGEMA > PNIPAAm > PHPMA. As a conclusion, PMPC‐g‐PE film exhibited the most biocompatibility among g‐PE films because its surface adsorbed less protein than those of the untreated PE and other g‐PE films and it showed the largest Km for the enzymatic reaction.  相似文献   

9.
Starch‐polyvinyl alcohol (PVA) blends in 2:8 wt % were prepared with various plasticizers such as polyethylene glycol (PEG‐200, PEG‐400) and glycerol. The crosslinking of starch‐PVA blends by epichlorohydrin was carried out in the presence of a plasticizer in situ. The obtained films were analyzed by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), dynamic mechanical and thermal analysis (DMTA), and X‐ray photoelectron spectroscopy (XPS), and remarkable changes in thermal stability and glass‐transition temperature have been observed on plasticizing and crosslinking in different concentrations. Different kinetic models such as Coats–Redfern, Broido, Friedman, and Chang were used to calculate the kinetic parameters of thermal decomposition. The results suggest that the thermal stability and activation energy of thermal decomposition passes through maxima at a critical concentration of plasticizer and increases with increasing crosslinker concentration. High‐resolution C 1s XPS analysis was used to provide a method of differentiating the presence of various carbons associated with different environment in the films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 25–34, 2006  相似文献   

10.
The behavior of hydrophilic matrixes in the presence of aqueous media plays a pivotal role in the selection of materials that come into contact with body fluids. Because polysaccharides have proven benefits in the treatment of skin lesions, the performance of membranes produced with chitosan combined with alginate [chitosan–alginate (Ch–A)], xanthan [chitosan–xanthan (Ch–X)], or guar gum [chitosan–guar gum (Ch–G)] after exposure to different aqueous solutions and humidity levels was analyzed with the aim of directing their applications as dressings in wounds with different exudate productions. The Ch–X membranes presented a high fluid‐uptake capacity and water‐vapor transmission rate (WVTR); this was attributed to ramifications in the xanthan structure, and the membranes were then recommended for moderately to highly exuding wounds. The Ch–G membranes showed a dense structure and presented low fluid‐uptake capacity; they were more appropriate for low‐exuding wounds or wounds in the advanced stage of cicatrization. Both the Ch–A and Ch–G membranes presented adequate mechanical properties in a wide range of relative humidity conditions and could be considered suitable for use in all body parts. However, as the Ch–A formulation showed limited WVTR, its use should be restrictedly to, at most, moderately exuding wounds. In all cases, the assessment of the wound type by a professional would be required to define the final dressing formulation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45386.  相似文献   

11.
Thiodiglycol (TDG) is a relatively nontoxic compound from organic wastes. By using TDG as a plasticizer with weights from 2.5 to 40%, we prepared soy protein isolate (SPI) films by a compression‐molding technique at 140°C and 15 MPa. The TDG‐plasticized films (SPI–TDG films) were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, thermogravimetric analysis, optical transmittance, and water uptake experiments. The SPI–TDG film plasticized with 25% TDG exhibited good mechanical properties, such as a tensile strength and modulus of 20.3 and 582 MPa, respectively, whereas the SPI–glycerol film with 25% glycerol had a tensile strength and modulus of 16.2 and 436 MPa, respectively. The results from the thermogravimetric analysis and water uptake experiments indicated that the thermal stability and water resistance of the TDG‐plasticized SPI materials were higher than that of the glycerol‐plasticized one. The improvements in the mechanical properties, water resistance, and thermal stability of the SPI–TDG films could be attributed to the strong intermolecular hydrogen bonding between soy protein and TDG and the presence of fewer hydroxyl groups in TDG, as compared structurally with glycerol. This study provided a new plasticizer for the preparation of soy protein materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The objectives of this study were to prepare starch nanocomposite films incorporating grape pomace extract (GPE) and cellulose nanocrystal (CNC) using a solvent‐casting method, and to characterize the mechanical properties, color, water vapor transmission rate (WVTR), crystalline structure, morphology, thermal stability, phenolic compound release profile and antibacterial activity of the films. Incorporating CNC and GPE significantly (P < 0.05) increased the films’ thickness, mechanical properties, and opacity. Brightness and color were mainly influenced by GPE level, while CNC had a great impact on the reduction of WVTR values of the film. Three characteristic cellulose I crystalline peaks were observed using X‐ray diffraction in CNC‐containing nanocomposite films. However, the effect of CNC levels on thermal stability was not significant. Phenolic compound releases were time and film dependent, and the nanocomposite films incorporating with GPE and CNC exhibited stronger inhibitory effect against Staphylococcus aureus ATCC 29213 compared to Listeria monocytogenes ATCC 7644. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44438.  相似文献   

13.
The aim of this study was to prepare nanocomposite films composed of whey protein isolate (W) and carrageenan (C) with nanocellulose (N) for food packaging applications. Response surface methodology was applied to investigate the effect of W concentration (v/v, 0–100%), glycerol/sorbitol (G/S) ratio (0–1), and N concentration (w/w, 0–5%) on the physicomechanical properties of film samples. Higher W and N contents and lower G/S ratios showed positive effect on rigidity of film samples, while introducing high concentration of N increased the water vapor permeability values with increasing plasticizer and C concentration. The highest water uptake values were observed in C based films, while a higher C content resulted in lower opacity values. The addition of nanocellulose into whey protein and carrageenan blend films in the presence of a plasticizer mixture improved the suitability of selected biopolymers for food packaging applications when compared to their neat films. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48902.  相似文献   

14.
To recover residual rubber from skim natural rubber (SNR) latex, a novel method was developed on the basis of the use of water‐soluble chitosan derivatives. An anionic chitosan derivative, N,O‐carboxymethyl chitosan (CMCh), and a cationic chitosan derivative, N‐(2‐hydroxy)propyl‐3‐trimethylammonium chitosan chloride (HTACh), were prepared. It was found that the creaming process could be achieved with both chitosan derivatives. By the addition of 7.34–10.3‐g/L CMCh, SNR latex was almost completely creamed, and no coagulation of SNR particles in the cream phase occurred. In the case of HTACh, the creaming process was achieved with a lower concentration (<3.70 g/L) than in the case of CMCh, but the size of SNR particles in the cream phase was larger. Solid‐state 13C‐NMR, thermogravimetric analysis, and ζ potential measurement results provided evidence that the creaming of SNR latex with CMCh and HTACh was controlled by the depletion flocculation and adsorption mechanisms, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Alternative materials have long been studied and developed to replace conventional skin dressings with the emergence of new biopolymers and development of polymeric film fabrication techniques. As a new material for polymeric dressings, films of poly(hydroxybutyrate) (PHB) blended with esterified alginate (ALG‐e) and poly(ethyleneglycol) was studied. The esterification of sodium alginate (ALG‐e) generated a material with some amphiphilic characteristics and increased compatibility with the PHB. PEG was added as plasticizer in PHB/ALG‐e films was also tested, since PEG is often used in blends with PHB to improve flexibility and reduce hydrophobicity. At the amounts studied, it was found that both PEG and ALG‐e increase the degree of crystallinity, but a decrease was observed in the hydrophobic nature of PHB films. At the maximum concentration of ALG‐e and PEG used an increase in water vapor permeability and a decrease in tensile strength was reached due to the synergistic effect caused by better homogenization of PEG and ALG‐e in the PHB matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44362.  相似文献   

16.
The influence of the poly(ethylene glycol) (PEG) plasticizer content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether‐co‐maleic acid) (PMVE/MA) was investigated with tensile mechanical testing, thermal analysis, and attenuated total reflectance/Fourier transform infrared spectroscopy. Unplasticized films and those containing high copolymer contents were very difficult to handle and proved difficult to test. PEG with a molecular weight of 200 Da was the most efficient plasticizer. However, films cast from aqueous blends containing 10% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 4 : 3 and those cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 2 : 1 possessed mechanical properties most closely mimicking those of a formulation we have used clinically in photodynamic therapy. Importantly, we found previously that films cast from aqueous blends containing 10% (w/w) PMVE/MA performed rather poorly in the clinical setting, where uptake of moisture from patients' skin led to reversion of the formulation to a thick gel. Consequently, we are now investigating films cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000, where the copolymer/plasticizer ratio is 2 : 1, as possible Food and Drug Administration approved replacements for our current formulation, which must currently be used only on a named patient basis as its plasticizer, tripropylene glycol methyl ether, is not currently available in pharmaceutical grade. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Two types of chitosan (CS), α and β, were blended with different concentrations of starch and cast to obtain films. The addition of 1% glycerol was used as a plasticizer to increase film flexibility. The properties of the obtained films were studied by positron annihilation lifetime spectroscopy, X‐ray diffraction, and scanning electron microscopy. The results indicate that pure β‐CS had smaller size free‐volume holes with high fractions than pure α‐CS; this was attributed to the difference in bonding of main chains in β‐CS. The addition of starch (>20% up to 50%) reduced the size of the free‐volume holes and increased their fraction because of the close packing of chain segments. The effect of 1% glycerol to the CS starch blends indicated that some modification took place. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Wound care has been a challenging subject for medical teams and researchers. Bacterial infections are one of the most serious complications in injured skins that often affect healing process. Antibacterial wound dressings can be used to facilitate wound healing process. The purpose of this study is to fabricate chitosan (Chito)/polyethylene glycol (PEG) antibacterial wound dressing doped with minocycline, and to evaluate the influence of composition ratio on the blending properties of the films. To improve the mechanical properties of these films, we examined various amounts of glycerol as a plasticizer. Moreover, we investigated morphological and mechanical aspects, water uptake, degradation, water vapor transmission and wettability properties of the films prepared with various ratios of Chito/PEG/Gly. Assessment of mechanical properties revealed that film containing 80:20 ratio Chito/PEG with 40 PHR Gly content exhibits the highest ultimate tensile strength and elongation at break (9.74 MPa and 45.73% respectively). Furthermore, results demonstrated that upon increasing PEG and Gly contents, degradability and hydrophilicity of the films increased whereas water uptake decreased. Water vapor transmission rate of the films was close to the range of 530–1200 g/m2d, indicating that the as formed films are possible candidates for dressing low exudate wounds or burns. Minocycline loaded films exhibited a biphasic drug release profile and it was more effective on gram-positive bacteria than on gram-negative bacteria. The polymeric film with the highest amount of loaded drug (2%) exhibited insignificant cytotoxicity (88%) against normal fibroblast cell line.  相似文献   

19.
The aim of this study was to investigate the film‐forming ability of the hemicellulose O‐acetyl‐galactoglucomannan (AcGGM) and to evaluate its potential as a barrier material. The polymer film was evaluated by measurement of its oxygen permeability (Ox‐Tran® Mocon), thermal properties (differential scanning calorimetry), and dynamic mechanical properties under a humidity scan (humidity‐scan DMA). The AcGGM was isolated from industrial process water obtained from mechanical wood pulping. The self‐supporting films were formed by solution‐casting from water. As expected, a plasticizer was needed to avoid brittleness, and glycerol, sorbitol, and xylitol were compared. However, these additives resulted in higher sensitivity to moisture, which might be less beneficial for some applications. Interesting oxygen barrier and mechanical strength properties were achieved in a film obtained from a physical blend of AcGGM and either alginate or carboxymethylcellulose, both having a substantially higher molecular weight than AcGGM. No phase separation was observed, since all the components used were rich in hydroxyl functionalities. When a plasticizer was also added to the binary mixture, a compromise between (1) low O2 permeability, (2) high mechanical toughness, and (3) flexibility of an AcGGM‐based film was obtained. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2985–2991, 2006  相似文献   

20.
The Starch–Casein‐based edible films containing with or without neem (Melia azadirachta) extract was prepared. The neem based free films were also heat pressed and all of them were assessed for inhibition of pathogenic organisms namely E. coli, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pseudomonas spp., and Salmonella, using disc diffusion assay. The Glass‐transition temperature (Tg) and thermal properties of the films were determined with the help of DSC and DMA. Tensile strength (TS), elongation at break (EAB), water vapor transmission rate (WVTR), and oxygen transmission rate (OTR) of the films were also determined. Incorporation of neem extract to edible film did not affect any of the physical properties except microbial, and the films were effective in inhibiting the growth of pathogens, since the inhibition zones varied from 15 mm as large as 24 mm. However, the heat‐pressed films containing neem extract led higher the Tg, TS, and modulus, while the EAB was marginally affected, indicating the toughening of the film and as expected, the heat pressing of films decreased the WVTR and marginally affected OTR. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3948–3954, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号