首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this work, polyacrylonitrile (PAN) and carbon nanofibers with controllable nanoporous structures were successfully prepared via electrospinning technique. For the preparation of porous PAN nanofibers, two kinds of polymers of PAN and polyvinylpyrrolidone (PVP) were used as electrospun precursor materials, and then the bicomponent nanofibers of PAN and PVP were extracted with water to remove the PVP in the composite polymer nanofibers. By altering the ratio of PAN/PVP in the precursor, the pore size and pore distribution of porous PAN nanofibers could be easily controlled. By using the porous PAN nanofibers as structures directing template and through heat treatment, carbon nanofibers with nanoporous structures were obtained. The porous nanofibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT‐IR), differential thermal analyses (DTA), Brunauer–Emmett–Teller (BET) nitrogen adsorption, X‐ray diffraction (XRD), and Raman spectra.

  相似文献   


2.
The aims of the current study were to synthesize new responsive polymeric microgels with embedded silver nanoparticles and then to employ these particles as catalyst for reduction reactions. To these ends, stimuli‐responsive microgels from PNIPAAm and the chitosan derivative were firstly synthesized by free radical precipitation polymerization. Then, silver nanoparticles were synthesized inside these microgel networks by in situ reduction of AgNO3. These microgels were temperature/pH sensitive with a phase transition temperature of 32–35 °C in water at pH = 3 and 8, respectively. The catalytic activity of the Ag nanoparticles for the reduction of 4‐nitrophenol can be tuned through the swelling or collapse of the responsive microgel network hosting the active nanoparticles.

  相似文献   


3.
Silver halide/polyaniline nanocomposites with different polyaniline morphologies, i.e., nanotubes and nanofibers, were successfully synthesized simply based on the general chemical oxidation polymerization process of aniline in halide acid aqueous solution (i.e., HCl or HBr) with the presence of dodecylbenzenesulfonic acid (DBSA)‐stabilized silver nanoparticles (NPs) as the precursors of silver halide NPs (i.e., AgCl or AgBr). X‐ray diffraction (XRD) and FT‐IR results confirmed the structures of resultant silver halide/polyaniline nanocomposites. TEM and SEM images demonstrated that AgCl or AgBr NPs were well‐dispersed and embedded in the polyaniline matrix. The reasons for the new strategy for the preparation of silver halide/polyaniline nanocomposites were based on two key points: the first was the high reactivity of silver NPs with HCl or HBr to generate AgCl/AgBr NPs. Second, with the assistance of DBSA, polyaniline could be synthesized with various nanostructures, i.e., nanotubes and nanofibers.

  相似文献   


4.
The synthesis of silver nanoparticles attached on the surface of a hollow cornet‐like polymer matrix which served as a reductant and host matrix is described. This hybrid organic/inorganic macromolecular matrix is exhibiting anion‐exchange properties, porous structure and hollow morphologies, and absorptions in the visible light region. Due to the anion‐exchange property and the 3D orientation of the macromolecular chains the material is defining a new functional organic/inorganic hybrid. For the synthesis of nanoparticles, no other reducing agents were used and silver nanoparticles with a mean diameter of less than 20 nm were attached on the surface of the polymer, thus inheriting the composite with high antibacterial activity tested in bacterial strains and yeasts.

  相似文献   


5.
Organic/inorganic hybrid nanocomposite coatings were prepared through a dual‐cure process involving the cationic photopolymerization of a vinyl ether based system and the condensation of an alkoxysilane inorganic precursor. All formulations produced transparent cured films characterized by high gel contents. An increase in glass transition temperature and an increase in storage modulus above Tg in the rubbery plateau were observed with increasing TEOS content in the photocurable formulation. TEM micrographs showed that the organic and inorganic phases were strictly interconnected with no macroscopic phase separation; the sizes of the silica domains in the polymeric matrix were 3–5 nm.

  相似文献   


6.
PLLA and stereocomplexed polylactide (sc‐PLA) nanofibers were formed by electrospinning solutions of the polymers in HFIP. A highly semi‐crystalline sc‐PLA nanofiber having only sc crystallites was confirmed by WAXD analysis. The diameters of the nanofibers of both polymers decreased slightly when they were annealed at 60 °C, which was near Tg. Enzyme degradation of both as‐spun PLLA and sc‐PLA nanofibers by proteinase K from Tritirachium album was carried out. The rate of degradation of the nanofibers can be controlled by varying annealing conditions, hence the extent of crystallinity.

  相似文献   


7.
2 vol.‐% TiO2 particles were incorporated into PET/PP blends with and without MA‐grafted PP compatibilizer. During extrusion of the PET/PP/TiO2 composites the TiO2 particles migrated from the PP matrix to the PET‐dispersed phase irrespective of the blending route. For the PET/PP/PP‐g‐MA/TiO2 composites, however, the location of TiO2 depended on the blending sequence. The preferred location of the TiO2 nanoparticles was confirmed by SEM pictures taken from the chemically etched surface of the blends. The observed migration behavior was traced to differences in the interfacial tensions between TiO2 and PET and TiO2 and PP, and to TiO2 encapsulation in one of the blend components during the related blending procedure.

  相似文献   


8.
Summary: In this study high‐refractive‐index polyimide/titania hybrid optical thin films were successfully prepared using a sol‐gel process combined with spin coating and multistep baking. The hybrid thin films were prepared from a soluble polyimide, a coupling agent, and a titania precursor. Transparent hybrid thin films can be obtained at TiO2 content as high as 40 wt.‐%. The FE‐SEM results suggest that the TiO2 particles in the hybrid thin films have diameters in the nanometer range. The thermal decomposition temperatures of the prepared hybrid materials are above those of the respective polyimide except for the highest TiO2 content hybrids. The refractive indices at 633 nm of the prepared hybrid thin films increase linearly from 1.66 to 1.82 with increasing TiO2 content. The excellent optical transparency, thermal stability, and tunable refractive index provide the potentials of the polyimide/titania hybrid thin films in optical applications.

  相似文献   


9.
Summary: In this work, epoxy resin/CaCO3 nanocomposites were prepared by in situ and inclusion polymerization. Nanoparticles with a size of 30–40 nm were dispersed efficiently in bisphenol‐A alkaline solution before polymerization and the dispersion could be kept in the resultant composite by a reaction that took place at the nanoparticle surface and among the nanoparticles when epichlorohydrin was added. Furthermore, the slightly conglomerated nanoparticles could even be separated by epoxy resin growing among them. This method showed a better dispersion of nanoparticles compared with solution‐blending as observed with TEM. Owing to better combination of epoxy resin and nanoparticles, the resultant nanocomposite showed a 12 °C increase in Tg compared to the nanocomposite prepared by solution‐blending. Tensile test revealed that the tensile strain of nanocomposites rises as the nano‐CaCO3 content increases.

The dispersion mechanism of nanoparticles through in situ and inclusion polymerization.  相似文献   


10.
Coaxial electrospinning using surfactants as sheath fluid for preparing high‐quality polymer nanofibers is studied. PAN nanofibers are fabricated using this process with Triton X‐100 solutions in DMF. FESEM demonstrates that the Triton X‐100 solution has a significant influence on the quality of the nanofibers. The nanofiber diameters can be controlled by adjusting the concentration of Triton X‐100 in the sheath fluids with a scaling law D = 640 C?0.32. The mechanism of the influence of Triton X‐100 solutions on the formation of PAN fibers is discussed and it is demonstrated that coaxial electrospinning with surfactant solution is a facile method for achieving high‐quality polymer nanofibers.

  相似文献   


11.
Co3O4/poly(N‐vinylcarbazole) (PNVC) composite with enhanced optical property was synthesized via a simple in situ bulk polymerization of NVC monomers in the presence of Co3O4 nanoparticles at an elevated temperature. High‐resolution electron microscopic observations showed that the Co3O4 nanoparticles were coated with uniform nanolayer shells of PNVC. Fourier‐transform infrared (FT‐IR) spectroscopy revealed the presence of strong interactions between the PNVC polymer chains with the Co3O4 surface in the Co3O4/PNVC composite. Raman spectroscopic results supported conclusions based on electron microscopy and FT‐IR spectra. The uniform nanolayer coating of PNVC decreases the inherent bulk conductivity of Co3O4, however, significantly increases the fluorescence property of Co3O4 nanoparticles.

  相似文献   


12.
Continuous and uniform yarns of thermoplastic nanofibers were prepared via direct melt extrusion of immiscible blends of thermoplastic polymers with CAB and subsequent extraction removal of CAB. Ratios of thermoplastic/sacrificial polymers, melt viscosity, and interfacial tensions affect the formation of nanofibers. Dominating sacrificing polymer content in the blends and low interfacial tensions between thermoplastic polymer and CAB are two key factors. This fabrication process possesses features of high productivity, versatility of thermoplastics, controllability, and environment friendliness in manufacturing thermoplastic nanofibers.

  相似文献   


13.
Sunflower oil‐based HBTPU/Ag and LTPU/Ag nanocomposites have been prepared by in situ catalytic reduction of a silver salt. The virgin polymer and their nanocomposites are soluble in various polar organic solvents and amenable for both solution‐casting and hot pressing. XRD, TEM, and UV spectroscopic analyses ascertained well‐dispersed, narrow‐sized Ag nanoparticles. Tensile testing, dynamic mechanical, thermogravimetric, and DSC analyses showed desirable mechanical and thermal features with improvement upon incorporation of Ag nanoparticles and the presence of a hyperbranched component in the nanocomposites. RSM has been used to evaluate the catalytic efficacy of the nanocomposites.

  相似文献   


14.
A straightforward method, which is termed novel handspinning, is reported for producing uniaxially aligned sPP nanofibers. As demonstrated by SEM analysis, the morphologies of handspun sPP nanofibers are strongly dependent upon the processing conditions such as spinning method and solvent system. Compared to the normal electrospun sPP nanofibers, the handspun sPP nanofibers show smoother morphologies. FT‐IR analysis demonstrates a significant difference in polymer chain conformation between the handspun and electrospun sPP nanofibers. Moreover, interestingly, the handspun sPP single nanofibers show higher Young's modulus and tensile strength than electrospun sPP single nanofibers.

  相似文献   


15.
Structural parameters of the filler network have been evaluated by fitting quasi‐static stress/strain cycles to the dynamic flocculation model. It is found that the size of filler clusters as well as the strength of filler–filler bonds increase with filler loading and carbon black activity (specific surface). This correlates with the behavior of the tear resistance obtained for pulsed loading under high‐severity conditions, implying that the characteristics of the filler network govern the fracture properties of filled elastomers. The behavior of the power law exponent of fatigue crack propagation versus tearing energy can be explained by flash temperature effects in the crack tip area.

  相似文献   


16.
Synthesis, properties, and patterning of new acrylic/silsesquioxane hybrid materials are reported. PMA‐functionalized PHSSQ was synthesized by hydrosilylation and then formulated with acrylate monomer mixtures to yield the photocurable materials. Experiments suggest that the thermal/mechanical properties of the parent acrylic polymers could be significantly enhanced by incorporating nano‐sized silsesquioxane moieties. The refractive index and optical loss were reduced by increasing the silsesquioxane content. The hybrid materials could be photocured and developed a Y‐shape channel pattern; potential applications include uses in patterned electronic and optoelectronic devices.

  相似文献   


17.
Dynamic and start‐up shear flow experiments along with SEM analysis are described for a PP/PET blend compatibilized by two reactive compatibilizers with different interfacial activity and rheological characteristics. The linear viscoelastic behavior of the blends is discussed using Palierne and fractional Zener models (FZMs). The nonzero value of Ge, the elastic modulus of spring element of FZM, is explained by the network‐like structure of the blends attributed to the interconnectivity between dispersed‐phase domains. Ge increases with increasing interfacial activity. Micelle formation due to extra amounts of compatibilizer in a system with higher interfacial activity leads to an increase of the elastic modulus, but to Ge = 0 in system with lower interfacial activity.

  相似文献   


18.
The preparation of new rubber based nanocomposites by using properly modified organophilic clays is described. A commercial organophilic montmorillonite containing a hydroxylated ammonium ion is reacted with LPBs. The reaction causes a decrease of the polarity of the clay and a great increase of the interlayer distance. The modified organoclays are successfully dispersed into rubber matrices (SBR or BR) by melt blending in an internal batch mixer. SAXS analyses and TEM micrographs revealed the formation of highly exfoliated nanocomposites containing intercalated stacks made of few lamellae.

  相似文献   


19.
Gd2O3 nanoparticles surface‐modified with IPDI were compounded with epoxy. IPDI provided an anchor into the porous Gd2O3 surface and a bridge into the matrix, thus creating strong bonds between matrix and Gd2O3. 1.7 vol.‐% Gd2O3 increased the Young's modulus of epoxy by 16–19%; the surface‐modified Gd2O3 nanoparticles improved the critical strain energy release rate by 64.3% as compared to 26.4% produced by the unmodified nanoparticles. The X‐ray shielding efficiency of neat epoxy was enhanced by 300–360%, independent of the interface modification. Interface debonding consumes energy and leads to crack pinning and matrix shear banding; most fracture energy is consumed by matrix shear banding as shown by the large number of ridges on the fracture surface.

  相似文献   


20.
PBS is partially crosslinked by using DCP as an initiator. A low gel fraction (<30 wt%) and low crosslink density of the partially crosslinked PBS are obtained at a DCP content of <0.5 wt%. Consequently, the partially crosslinked PBS retains both its processability and its crystallinity. The overall crystallization rate of the PBS is enhanced by partial crosslinking as evidenced by a considerable increase in crystallization temperature (Tc). Meanwhile, the mechanical properties of PBS are significantly improved by the partial crosslinking. The structure/property relationships of the partially crosslinked PBS are explored.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号