首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用静电纺丝法制备了聚丙烯腈(PAN)/聚氧化乙烯(PEO)复合纳米纤维膜.利用原子力显微镜(AFM)、电子显微镜(SEM)分析了纤维的直径分布、整体形貌及单根纳米纤维的表面形貌;应用傅里叶变换红外光谱(FT-IR)分析了PAN、PAN/PEO、PEO纳米纤维膜的化学组成;同时借助热重(TG)和液滴形状分析仪分析了PEO的加入对复合纤维膜热性能及润湿性能的影响.结果表明:在PAN/PEO比例为5∶5时,纤维膜最有利于制备聚合物电解质膜.  相似文献   

2.
利用静电纺丝制备聚丙烯腈/醋酸纤维素(PAN/CA)复合纳米纤维膜,并依次用0.05mol/L、0.1mol/L NaOH溶液对其进行水解处理,制得聚丙烯腈/再生纤维素(PAN/RC)复合纳米纤维膜.研究表明:纺丝液流量为0.5mL/h,所施加的电压为17kV,接收距离为18cm时,制得的PAN/CA复合纳米纤维直径更均匀,成丝形态更稳定.对PAN/CA复合纳米纤维膜及PAN/RC复合纳米纤维膜分别进行电镜扫描、红外光谱分析及静态接触角测定.结果表明:水解后的复合纳米纤维形态保持稳定,PAN/CA复合纳米纤维中的醋酸纤维素的酯基在碱处理后得到有效水解,复合纳米纤维膜的静态接触角由水解前的124.7°降低为10.1°,亲水性能得到大幅提升.  相似文献   

3.
将纳米银颗粒(AgNPs)和二氧化钛(TiO2)加入聚丙烯腈(PAN)溶液中,在保证静电纺丝正常进行的基础上,按照L9(34)正交试验方案,制备试验用PAN/AgNPs/TiO2纳米纤维膜,测试其微观形貌、防紫外线性能、防电磁辐射性能和拉伸性能,并进行直观分析和方差分析.结果表明:TiO2质量分数对纳米纤维膜纤维直径影...  相似文献   

4.
通过静电纺丝的方法制备以月桂酸和硬脂酸二元低共熔物(LA-SA)为固-液相变材料,聚丙烯腈(PAN)为基体的超细纤维。研究最佳静电纺PAN纤维的纺丝工艺参数,纺丝溶液中不同LA-SA含量对复合纤维的形貌结构影响。确定最佳静电纺PAN纳米纤维的工艺参数(纺丝电压15KV,接收距离20cm,纺丝液流速1ml/h)。SEM观察表明:随LA-SA含量的增加,复合纤维的平均直径逐渐增大;当复合纤维中LA-SA含量较高时,纤维表面变得不光滑,并呈现褶皱的形貌特征。  相似文献   

5.
环锭纺制备芯鞘型短纤/长丝复合纱的成纱机理与工艺   总被引:4,自引:0,他引:4  
在细纱机上增设张力控制装置,以涤纶长丝为示踪纤维,通过改变复合纺纱的工艺条件,如:改变长丝与短纤须条的张力比、长丝喂入短纤须条的相对位置、复合纺纱的捻系数等工艺参数,用显微镜观察涤纶长丝与短纤维复合加捻成纱后的缠结与纱线结构,分析在上述工艺条件下长丝与短纤维的相互转移规律与机理。在此基础上提出了制备芯鞘型短纤/长丝包芯复合纱的纺纱新工艺和方法。  相似文献   

6.
为提高相变纳胶囊在静电纺纤维上的负载量,采用相反转温度(PIT)乳化和自由基聚合技术制备了交联聚甲基丙烯酸甲酯(PMMA)/正十八烷纳胶囊,将其添加到聚偏氟乙烯(PVDF)、聚丙烯腈(PAN)纺丝液中,通过静电纺丝技术分别制备了PVDF和PAN复合纳米纤维,并使用SEM、TEM、DSC和TG等方式对2种纳米纤维进行表征。结果表明:2种复合纤维均平直光滑,纺锤状较少;PVDF复合纤维平均直径在100~300 nm之间,PAN复合纤维平均直径在400~800 nm之间,纤维直径随胶囊加入量的增加而增大;PAN纤维负载相变纳胶囊的能力优于PVDF纤维,热性能更好;纳胶囊添加质量分数为9%的PAN相变纤维具有较为优良的热焓值和热稳定性,其结晶焓为22.55 J/g。  相似文献   

7.
利用同轴静电纺丝技术,制备以丝素(SF)/明胶(GE)共混物为皮层,聚己内酯(PCL)为芯层的复合纳米纤维膜。研究不同芯层浓度对复合纳米纤维膜形貌、孔径、力学性能和生物相容性的影响。结果表明:所制备的SF/GE-PCL复合纳米纤维表面光滑且有明显的皮芯结构,随着芯层浓度由4%增大到10%,复合纳米纤维的平均直径从256nm增大到941nm,纤维膜的平均孔径从0.576μm增大到1.018μm,纤维膜的断裂强度和断裂应变增大,人皮肤成纤维细胞能在皮芯结构纳米纤维膜上黏附、生长和增殖。  相似文献   

8.
利用静电纺丝方法制备了聚丙烯腈/细菌纤维素复合纳米纤维.研究了溶液浓度、细菌纤维素含量对复合纳米纤维成形及吸水性能的影响.研究结果表明:随着溶液浓度的增加,静电纺丝产物由珠状结构纤维逐渐成为平滑纤维,上工平均纤维直径逐渐增大;随着细菌纤维素含量的增加,共混纺丝溶液的黏度增加,得到的复合纳米纤维直径也增加,同时其吸水性也有较大的提高.  相似文献   

9.
针对醋酸乙烯酯(VAc)为第二单体的聚丙烯腈湿法纺丝,研究凝固浴浓度、凝固浴温度和喷丝头拉伸率等条件对PAN纤维结构和性能的影响.采用扫描电子显微镜(SEM)、单丝强力仪、声速取向测量仪和动态热机械分析仪(DMA)等设备对湿纺PAN纤维的结构和性能进行分析.结果表明:在一定范围内升高凝固浴温度,有利于获得圆形截面的纤维;随着拉伸倍数的增大,纤维结构变得致密,纤维取向程度增大,玻璃化转变温度升高,纤维断裂强度增大.断裂伸长率降低.  相似文献   

10.
利用针刺法非织造技术将再生涤纶(PET)、黄麻和丙纶短纤维(PP)进行混合、成网、加固制得再生涤纶/黄麻/丙纶纤维复合毡,再将制备的纤维复合毡经过热压成型工艺,制得纤维复合板材。研究制备的纤维复合板材的拉伸和弯曲性能,分析原料混合比例、热压参数(温度、时间、压力)对纤维复合板材的该性能的影响,研究分析得出:当再生涤纶短纤维、黄麻短纤维和丙纶短纤维质量混合比为35:35:30、热压温度为230℃、热压时间为1.0min、热压压力为5MPa时,制备的再生涤纶/黄麻/丙纶短纤维复合板材的拉伸强度和弯曲强度最大。  相似文献   

11.
针对静电纺丝纳米纤维膜孔径偏大的问题,以聚偏氟乙烯(PVDF)为成膜聚合物,N,N-二甲基甲酰胺(DMF)/丙酮为混合溶剂制得纺丝液,采用静电纺丝技术制备PVDF纳米纤维膜,并研究聚合物浓度对纳米纤维膜孔结构及油水分离性能的影响。结果表明:增大纺丝液浓度会明显提高PVDF纳米纤维直径,使得纳米纤维直径分布变窄;当PVDF质量分数为14%时,所得PVDF纳米纤维膜具有较好的表面形貌和拉伸强度;油水分离结果表明,重油体系(二氯甲烷+水)通量最大达2 900.86 L/(m2·h),分离效率高达99.5%,高粘附油体系(玉米油+水)通量最小为32.98 L/(m2·h),分离效率仅有91.7%。在进一步的油包水乳液分离过程中,PVDF纳米纤维膜(M-3)具有的油水分离通量为7.9 L/(m2·h),分离效率高达97.6%。  相似文献   

12.
为了研究桑皮纤维/棉纤维混纺纱线中桑皮纤维质量分数对混纺纱线拉伸性能的影响,纺制了不同混纺比的桑皮纤维/棉纤维混纺纱线,在YG061电子单纱强力仪上进行了拉伸性能测试,并对测试结果进行了分析和比较。结果表明,桑皮纤维/棉纤维混纺纱线的断裂强度随着桑皮纤维质量分数的增加而线性增加,当质量分数达到一定程度后,混纺纱断裂强度随着桑皮纤维质量分数的增加而降低。混纺纱线的断裂伸长率随着桑皮纤维质量分数的增加,有先增加后降低的趋势。总之,桑皮纤维质量分数在20%~30%范围内,混纺纱的拉伸性能比较优良。  相似文献   

13.
以涤纶和低熔点纤维为原料,利用非织造针刺法和热轧工艺制备出复合土工布,通过透水性及拉伸强度等性能测试,筛选出较优的复合土工布作为滤膜;以HDPE和EVA为主要原料,利用滚吸法制备出排水板并分析筛选出通水量、力学性能最优的排水板。最后,将优选出来的复合土工布滤膜与排水板板芯进行热熔粘合,制备出土工复合排水材料,该材料的拉伸强力要大于两者复合前各个单体的拉伸强力,并且具有很高的通水量。  相似文献   

14.
通过静电纺丝技术制备了丙烯腈-偏氯乙烯共聚物[P(AN-co-VDC)]纳米纤维,针对纺丝过程中的工艺参数,详细考察了溶液浓度、施加电压和推进速率对纳米纤维形貌和直径的影响.结果表明:溶液浓度对纤维的形貌和直径影响最大,电压和推进速率对其的影响相对较小;当溶液中聚合物质量分数为20%、电压为25 kV、推进速率为0.63 mL/h时可获得表面光滑、形貌均一且直径较小的纳米纤维.  相似文献   

15.
为提高纳米纤维复合织物的服用性能及界面结合性能,利用等离子体技术对相变/PAN纳米纤维膜进行预处理,通过动态接触角测试确定了最佳等离子体处理条件;重点研究了织物复合时低温热熔网膜胶、纤维丝胶和气凝胶3种不同特性的粘合剂对复合织物的保温性、透气透湿性及力学性能的影响.结果表明:等离子体处理相变/PAN纳米纤维膜的最佳参数为功率120 W,处理速率80 mm/s;使用气凝胶粘合的复合织物保温性能最佳,传热系数12.37 W/(m~2·℃),降温系数39.26%,克罗值0.521(0.155℃m~2/W);低温热熔网膜胶粘合的复合织物表现出较高的透气性、透湿性效果及界面结合性能,透气率11.42 mm/s,透湿量17 010.2g/(m~2·d),剥离强力53.75 c N;粘合剂在织物界面的形貌结构和分布状态是复合织物性能的关键影响因素.  相似文献   

16.
采用静电纺丝技术以2种亲水性聚合物聚丙烯酸(PAA)与聚乙烯醇(PVA)为原料制备复合纳米纤维膜,同时在纺丝溶液中添加无机盐氯化锂(LiCl)以提高纳米纤维膜的吸湿性能。利用扫描电镜、水接触角等方法对纳米纤维膜的微观形貌和亲疏水性能进行表征和测试;采用恒温恒湿系统对复合膜的吸湿性能进行测试。实验结果表明:当PAA、PVA混合质量比为5∶5时,纳米纤维的形态与吸湿性能最优;掺杂的LiCl质量分数为3.5%时,纤维膜吸湿性能最好,吸湿率可达到1.32 g/g。  相似文献   

17.
采用竹碳/银纳米粒子超细微粉,并利用复合纺丝技术开发出多功能复合抗茵锦纶纤维,结合工厂的实际生产条件对该纤维拉伸性能进行了测试.结果表明,与单组分多功能抗茵聚酰胺长丝纤维相比,在同样的抗茵母粒添加量的条件下,复合纺丝生产的多功能抗茵聚酰胺长丝纤维具有良好的力学性能;在实际生产牵伸工艺范围内,抗茵锦纶纤维的拉伸强度随牵伸倍数增加而增大,并呈现线性规律;拉伸伸长率随牵伸倍数增加而减小,表现出负指数规律特征.  相似文献   

18.
通过对大豆蛋白复合纤维/涤纶混纺纱的强伸性、大豆蛋白复合纤维在混纺纱中的分布及混纺纱的抗弯刚度等力学性能的测试分析,采用多目标优化方法确定了大豆蛋白复合纤维/涤纶混纺纱的优化混纺比,优化结果表明,当大豆蛋白复合纤维在大豆蛋白复合纤维/涤纶混纺纱中大豆蛋白复合纤维质量分数达到40%左右时,即为最优混纺比,该混纺比可以保证混纺纱线性能达到最优效果。  相似文献   

19.
通过静电纺技术制备了聚丙烯腈共聚物(PAN)纳米纤维,并利用乙二胺对其进行化学改性,研究胺化纳米纤维膜对铜离子的吸附性能.通过傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)对纳米纤维膜的形态及性能进行了表征,探讨了p H、反应时间、初始浓度等因素对铜离子吸附性能的影响.结果表明:吸附容量分别随p H、反应时间及铜离子初始浓度的增大而增大,当p H达到5,反应时间为3 h,浓度达到100 mg/L时,吸附容量达到平衡.Langmuir与二级动力学模型更符合吸附反应,最大吸附量可达54 mg/g,根据热力学参数分析,此吸附为吸热反应;在进行6次的脱附-吸附后,胺化聚丙烯腈共聚物纳米纤维膜对铜离子仍然具有良好的吸附效果.  相似文献   

20.
采用热湿蒸汽处理毛纱和涤纶长丝,分析处理温度、时间和拉伸速度对纱线拉伸性能的影响,并归纳出相应的断裂强度和断裂伸长保持率的评价方程。结果表明:热湿处理对毛纱的拉伸性能的改善较为明显,改善程度主要取决于处理温度、时间和拉伸速度。当拉伸速度一定时,随着处理温度或时间的增加,毛纱的断裂强度、初始模量和断裂比功保持率逐渐减小,断裂伸长保持率明显增加;当处理温度和时间一定时,随着拉伸速度的增加,毛纱的断裂强度、初始模量和断裂比功均增加,断裂伸长率下降;热湿处理对涤纶长丝拉伸性能的改善不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号