首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal and crystal morphological properties of amorphous and melt crystallized poly(oxy‐1,4‐phenyleneoxy‐1,4‐phenylenecarbonyl‐1,4‐phenylene) (PEEK) were investigated. Two different molecular weights were studied by Temperature Modulated DSC (TMDSC) over a broad range of annealing times and temperatures. The lower molecular weight PEEK under all crystallization conditions was found to exhibit secondary crystal melting in the low endotherm region, followed by melting of primary crystals melting in the low endotherm region, followed by melting of primary crystals superimposed with a large recrystallization contribution. Primary crystal melting broadly overlapped with melting of the recrystallized species and contributed to the broad highest endotherm. Recrystallization contributions and the interpretation of TMDSC were partially confirmed by independent rapid heating rate melting point determinations and variable heating rate DSC. The higher molecular weight PEEK showed many similarities but generally had smaller levels of reorganization above the annealing temperature under most higher temperature crystallization conditions. TMDSC provides excellent resolution of recrystallization and related events compared to standard DSC. The broad and substantial exothermic recrystallization in amorphous samples was also examined, showing that recrystallization continues through the final melting region.  相似文献   

2.
Bisphenol‐A polycarbonate (BAPC) was synthesized by solid‐state polymerization (SSP) using a semicrystalline prepolymer crystallized by antisolvent method. The antisolvent crystallization was investigated as a function of antisolvent types using X‐ray diffraction (XRD), different scanning calorimetry (DSC), and scanning electron microscopes (SEM). The results showed antisolvent types had a significant effect on the crystallization of BAPC. Prepolymer induced by acetone as an antisolvent gained a higher crystallinity of 37.0%, more uniform particle size, and mature crystal structure compared with the samples crystallized by methanol and ethanol. Then crystallization of BAPC by acetone was carried out at crystallization temperature in the range of 40–80 °C for 1–5 h. A high crystallinity of 42.0% was acquired with the crystallization conducted at 70 °C for 2 h. Prepolymer with appropriate crystallinity of 37.8% resulted in high‐molecular‐weight polymer of 57,411 via SSP due to the effect of crystallinity and plasticization of residual solvent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43636.  相似文献   

3.
采用DSC,WAXD研究了在超临界CO2作用下,温度、压力和共溶剂对双酚A型聚碳酸酯(BAPC)的结晶和熔融行为的影响。结果表明,超临界CO2显著降低BAPC的结晶温度;少量共溶剂的加入使BAPC的结晶更加完善,BAPC晶体是单斜晶子;超临界CO2诱导结晶并未引起预聚体官能团的改变。  相似文献   

4.
The wettability and crystallization behaviors of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)‐graft‐polyacrylamide (PAM) films were studied. X‐ray photoelectron spectroscopy analyses illustrated that about 62 atom % of the total polar functionalities on the grafted film with 17% grafting percentage (GP) was amide groups. Wide‐angle X‐ray diffraction results suggest that grafted PAM induced defects in PHBV crystals and influenced their crystal structure. Differential scanning calorimetry (DSC) spectra showed the two melting regions, 60–90 and 145–170°C, of the imperfect PHBV crystals of the grafted films. Grafted PAM could suppress the recrystallization of PHBV, which was consistent with the polarizing optical microscopy results, in which the maximum PHBV spherulite diameter decreased from 350 μm for the PHBV film to 50 μm for the film with 53% GP. In addition, DSC studies revealed that the crystallinity of the grafted films decreased with increasing GP, which facilitated the diffusion of water into the films. The water contact angle of grafted films decreased and the water‐swelling percentage increased as GP went up. These results demonstrate the potential of PHBV‐g‐PAM for wettable surface constructs in tissue engineering applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

5.
The effects of methanol and ethanol vapor‐induced crystallization on vapor and gas permeabilities and on the structure of poly(lactic acid) (PLA) films were systematically investigated. At high temperature conditions, the vapor permeability of PLA films decreased with increasing exposure time. The PLA films that were exposed to alcohol vapor became slightly cloudy, and no changes in chemical structure were observed. Alcohol vapor‐induced crystallization formed α‐crystal structure. The vapor permeability decreased with increasing crystallinity. However, nitrogen permeability slightly increased after vapor‐induced crystallization. The dependence of crystallinity on vapor and gas permeabilities was different from each penetrant. Total crystalline structures, including continuous crystal structures, remaining amorphous regions, and their interface depend on vapor and gas permeabilities. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40140.  相似文献   

6.
This work was aimed at studying supercritical carbon dioxide (scCO2)‐induced melting temperature depression and crystallization of a syndiotactic polypropylene (sPP). Under scCO2, the melting temperature of the sPP could be significantly reduced depending on the CO2 pressure. The scCO2‐induced crystallization of sPP was investigated using differential scanning calorimeter (DSC) and Fourier transform infrared spectroscopy. Two melting peaks were observed in DSC. The one at lower melting temperature referred to the melting of the sPP crystals induced by scCO2 in its amorphous phase. Its location was shifted to higher temperature, and its area increased with increasing scCO2 treatment time, temperature, and pressure. The melting peak at higher temperature corresponded to the melting of the sPP crystals that already existed before scCO2 treatment. Its location and area remained almost unaffected by the scCO2 treatment. The scCO2‐induced crystallization was related to scCO2‐promoted transformation of the mesophase form III of the sPP to the stable form I. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

7.
Low and high density polyethylenes (PE) were crosslinked by two methods, namely, chemically by use of different amounts of tert‐butyl cumyl peroxide (BCUP) and by irradiation with different doses of electron beam. A comparison between the effects of these two types of crosslinking on crystalline structure, crystallinity, crystallization, and melting behaviors of PE was made by wide angle X‐ray diffraction and DSC techniques. Analysis of the DSC first heating cycle revealed that the chemically induced crosslinking, which took place at melt state, hindered the crystallization process and decreased the degree of crystallinity, as well as the size of crystals. Although the radiation‐induced crosslinking, which took place at solid state, had no significant influence on crystalline region, rather, it only increased the melting temperature to some extent. However, during DSC cooling cycle, the crystallization temperature showed a prominent decrease with increasing irradiation dose. The wide angle X‐ray scattering analysis supported these findings. The crystallinity and crystallite size of chemically crosslinked PE decreased with increasing peroxide content, whereas the irradiation‐crosslinked PE did not show any change in these parameters. As compared with HDPE, LDPE was more prone to crosslinking (more gel content) owing to the presence of tertiary carbon atoms and branching as well as owing to its being more amorphous in nature. HDPE, with its higher crystalline content, showed relatively less tendency toward crosslinking especially by way of irradiation at solid state. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3264–3271, 2006  相似文献   

8.
Ultra high molar mass polyethylene (UHPE) was melted at 160°C for various times or at various temperatures for 5 min and then the crystallization of the UHPE was carried out on cooling. It was found that the crystallization temperature decreased as the heating time or heating temperature increased. During the melting process, thermal motion of the chains leads to a change of chain conformation from parallel‐extended chains to interpenetrated random coils, accompanied by the occurrence of entanglements. As a result, the crystallization temperature shifts to lower temperature. On the other hand, samples of UHPE with less entanglement were prepared from a dilute solution by a freeze‐drying procedure. It was observed that the crystallization temperature of the freeze‐dried samples from the melt depressed with dereasing solution concentration. UHPE would produce small crystals in the freezing process, thus leading to a reduction in melting point, and a sifting of crystallization temperature to lower temperature. Based on the melting point, the average volume of small crystals was estimated; it is even smaller than that of one single chain of the UHPE.  相似文献   

9.
Completely amorphous, transparent bars of amylopectin were prepared by injection molding of pure native semicrystalline samples (Waxy Maize). The formation of a semicrystalline morphology was studied during annealing treatment at various temperatures in a wet atmosphere, using simultaneous WAXS and SAXS. Amylopectin samples crystallized during 20 days in a humid atmosphere at room temperature and subjected to a successive melting process were also studied by X‐ray scattering. Results indicate that individual molecules crystallize independently from each other, similar to the case of native amylopectin grains. During the first stages of crystallization, the changes in the SAXS pattern suggest that uncorrelated crystal blocks are formed, which may arrange to lamellae (if a secondary network of double‐helix net‐points is hydrothermally dissociated). At the beginning of the crystallization process, only few amylopectin molecules (about 10%) are incorporated into the nanostructure. A shell‐like structure of semicrystalline layers, comparable to that of a native grain, develops. When crystallization proceeds further, the initially thin shell layers thicken. This causes the amorphous interlayers to be subjected to inner tensions, leading to a decrease in the melt temperature. After a storage time of 20 days in a humid atmosphere, amylopectin reaches a crystallinity level of 54%, only slightly lower than that of the initial native grains. Upon heating the retrograded amylopectin, immediately before complete melting, the long‐period shows a value of 15 nm with a crystal thickness, derived from WAXS, of only 4 nm. Such a structure, which has not been reported before, is due to the relaxations of the inner tensions during melting, which lead to a disappearance of inserted interlamellar crystals. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3832‐3839, 2006  相似文献   

10.
Differential scanning calorimetry (DSC) was used to evaluate the thermal behavior and isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) copolymers containing 2‐methyl‐1,3‐propanediol as a comonomer unit. The addition of comonomer reduces the melting temperature and decreases the range between the glass transition and melting point. The rate of crystallization is also decreased with the addition of this comonomer. In this case it appears that the more flexible glycol group does not significantly increase crystallization rates by promoting chain folding during crystallization, as has been suggested for some other glycol‐modified PET copolyesters. The melting behavior following isothermal crystallization was examined using a Hoffman–Weeks approach, showing very good linearity for all copolymers tested, and predicted an equilibrium melting temperature (Tm0) of 280.0°C for PET homopolymer, in agreement with literature values. The remaining copolymers showed a marked decrease in Tm0 with increasing copolymer composition. The results of this study support the claim that these comonomers are excluded from the polymer crystal during growth. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2592–2603, 2006  相似文献   

11.
超临界CO_2作用下双酚A型聚碳酸酯的诱导结晶和熔融行为   总被引:1,自引:1,他引:0  
采用差示扫描量热法(DSC)研究了在超临界CO2作用下,温度、压力和共溶剂对双酚A型聚碳酸酯(BAPC)的结晶和熔融行为的影响.结果表明,超临界CO2能使双酚A型聚碳酸酯(BAPC)在其玻璃化转变温度下结晶.CO2是非极性流体,加入共溶剂能增加超临界流体的极性,或是与溶质形成氢键,从而大大提高流体的溶解能力.少量共溶剂的加入使BAPC的结晶更加完善,并能使其在更低的温度和压力条件下结晶.  相似文献   

12.
This work investigated how pre‐melting temperature (Tmax) and cooling rate (C) affected the non‐isothermal melt crystallization, melting behavior and crystal structure of syndiotactic polystyrene (sPS) by using differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD) techniques. Experimental results indicated that raising Tmax or C decreased the crystallization peak temperature (Tp) and crystallization initiating temperature (Ti). The crystallization kinetics was analyzed through the Ozawa equation. Although the Ozawa exponent n and cooling function K(T) were determined for Tmax = 340°C and Tmax = 315°C specimens, for Tmax = 290°C specimens, the Ozawa equation was not applicable. Activation energies for the non‐isothermal crystallization processes of different Tmax specimens were estimated to be approximately 418 kJ/mol. As Tmax was raised the nucleation rate of sPS became slower. The multiple melting peaks were associated with different polymorphs as well as recrystallized crystals that formed during heating scans. The percentage content of α polymorph formed in the crystals under various crystallization conditions was estimated through WAXD experiments.  相似文献   

13.
The chemi‐crystallization and free volume changes of high‐density polyethylene (HDPE) exposed to subtropical humid climate of Guangzhou, China, were investigated using Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic mechanical analysis and positron annihilation lifetime spectroscopy. An increase in content of carbonyl groups and significant chemi‐crystallization were observed to occur during natural exposure. Chain scission accounted for the chemi‐crystallization and would lead to greater crystallizability of the molecules. The reheating DSC run indicated that the crystallizability of the degraded HDPE molecules increased initially with exposure time and then decreased. Positron data showed the new crystals induced by chemi‐crystallization indeed had more imperfect crystal structure in comparison with the pre‐existing parent crystals, and the free volume located in amorphous regions decreased involving a shrinking of the free volume holes. The shrinkage of free volume holes was correlated with the loss of mobility of HDPE molecules, which was confirmed by the increase of glass transition temperature. The formation of new imperfect crystals might increase the amount of rigid amorphous fraction of HDPE materials, as well as the occurrence of crosslinking reactions of molecules located in the interior of HDPE materials, consequently decreasing the molecular mobility. © 2016 Society of Chemical Industry  相似文献   

14.
The copolyester was characterized as having 71 mol % trimethylene terephthalate units and 29 mol % ethylene terephthalate units in a random sequence according to the NMR spectra. Differential scanning calorimeter (DSC) was used to investigate the isothermal crystallization kinetics in the temperature range (Tc) from 130 to 170°C. The melting behavior after isothermal crystallization was studied using DSC and temperature‐modulated DSC by varying the Tc, the crystallization time, and the heating rate. The DSC thermograms and wide‐angle X‐ray diffraction patterns reveal that the complex melting behavior involves melting‐recrystallization‐remelting and different lamellar crystals. As the Tc increases, the contribution of recrystallization gradually falls and finally disappears. A Hoffman‐Weeks linear plot yields an equilibrium melting temperature of 198.7°C. The kinetic analysis of the growth rates of spherulites and the change in the morphology from regular to banded spherulites indicate that a regime II→III transition occurs at 148°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Three polypropylenes with various isotacticities and regioregularities were prepared with metallocene catalysts at different polymerization temperatures. WAXD results showed that the relative content of γ crystals in polypropylenes increased as isotacticity decreased. It was found that the γ crystal overcame the α crystal and became predominant in polypropylene of low isotacticity and high regioerrors. More γ crystals were also formed at higher crystallization temperatures. The isothermal crystallization kinetics of α and γ crystals were compared and the metastability of these two crystal phases was interpreted in terms of the crystallization kinetics. It was observed that the α crystal has a faster crystallization rate than that of the γ crystal and, thus, higher stability at low temperature. By contrast, the γ crystal tends to have a faster crystallization rate and becomes more stable at high temperature. The metallocene‐based polypropylenes with different isotacticities have similar Avrami exponents. As the content of the γ crystal increases, double melting peaks become more evident. Equilibrium melting temperatures were derived from Hoffman–Weeks analysis and very close equilibrium melting temperatures were obtained, 185.5 and 184.0°C, for two metallocene‐based polypropylenes containing major α crystals and one of 182.5°C for the polypropylene with predominant γ crystals. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3215–3221, 2003  相似文献   

16.
Melting behavior and crystal morphology of poly(3‐hydroxybutyrate)‐poly(D ,L ‐lactic acid) (PHB‐RPLA) blends with various compositions have been investigated by modulated temperature differential scanning calorimetry (mt‐DSC), polarized optical thermomicroscopy (POTM), modulated force thermomechanometry (mf‐TM), and small angle X‐ray scattering (SAXS). Thermal properties were investigated after fast cooling crystallization treatment. Multiple melting peak behavior was observed for all polymers. mt‐DSC data revealed that PHB‐RPLA blends undergo melting‐recrystallization‐remelting during heating, as evidenced by exothermic peaks in the nonreversing heat capacity. A decrease in degree of crystallinity due to significant melt‐recrystallization was observed for blends. PHB‐RPLA showed different crystal morphologies for various compositions. POTM results showed that the crystallization rates and sizes of spherulites were significantly reduced as RPLA content increased. mf‐TM results confirmed miscibility of these two polymers. SAXS data provided evidence of lamella thickness of blends, which increased with increasing RPLA content. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
Isothermal and non‐isothermal crystallization kinetics of microbial poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(3HB‐3HHx)] was investigated by differential scanning calorimetry (DSC) and 13C solid‐state nuclear magnetic resonance (NMR). Avrami analysis was performed to obtain the kinetic parameters of primary crystallization. The results showed that the Avrami equation was suitable for describing the isothermal and non‐isothermal crystallization processes of P(3HB‐3HHx). The equilibrium melting temperature of P(3HB‐3HHx) and its nucleation constant of crystal growth kinetics, which were obtained by using the Hoffman–Weeks equation and the Lauritzen–Hoffmann model, were, respectively, 121.8 °C and 2.87 × 105 K2 when using the empirical ‘universal’ values of U* = 1500 cal mol?1. During the heating process, the melting behaviour of P(3HB‐3HHx) for both isothermal and non‐isothermal crystallization showed multiple melting peaks, which was the result of melting recrystallization. The lower melting peak resulted from the melting of crystals formed during the corresponding crystallization process, while the higher melting peak resulted from the recrystallization that took place during the heating process. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
Ziegler-Natta and Metallocene Catalysis isotactic polypropylene with different chemical defects were isothermally crystallized at various crystallization temperatures. The crystal thickness and their corresponding melting behavior were studied using small angle X-ray scattering, atomic force microscopy, optical microscopy, and differential scanning calorimetry. The equilibrium melt temperature of the samples was calculated from the Hofmann-Weeks extrapolation for the supercooling. Two lamellar populations were distinctly observed in all cases during the crystallization process. Relatively thicker and stable lamellar crystals which melt at higher temperatures were observed with lowering the supercooling and found catalysis dependence in these crystals. During melting, no significant recrystallization of the samples has been detected for higher crystallization temperature where recrystallization processes enhance the lamellae thickness. The melting of the crystals has found strong dependence with the crystallization temperatures, the catalysis process and the nature of the defects present in the isotactic polypropylene. The increase of the crystal lamellae thickness and their melting temperature might be presumably related with the chain folding mechanism as well as the stability of the crystals formed during the isothermal crystallization process. A combined plot of SAXS and DSC results is demonstrated for the equilibrium melting temperature followed by critical analysis of the results.  相似文献   

19.
A random copolymer of propylene with small amounts of 1‐butene comonomer, synthesized with a Ziegler–Natta catalyst, was fractionated by temperature rising elution fractionation (TREF) to systemically investigate the fraction samples' molecular microstructure, as well as their relationship to the melting and crystallization behavior. First, TREF was employed to fractionate the sample, and then crystallization analysis fractionation (Crystaf) was used to check the effect of the TREF experiment. In the characterization of the molecular microstructure, carbon‐13 NMR spectroscopy (13C NMR) and gel permeation chromatography (GPC) experiments gave the following results: the fraction samples have relatively uniform molecular microstructure; with an increase in elution temperature, the 1‐butene content in the fraction samples decreases, but the molecular weight (Mn) and number average sequence length of propylene (n?P) increase. In the study on melting and crystallization behavior, differential scanning calorimetry (DSC) experimental results show that the melting temperature increasingly decreases with an increase in 1‐butene content; however, dependence of the melting temperature on molecular weight becomes weaker and weaker with an increase in the number average molecular weight in the range of number average molecular weight below 1.82 × 105 g/mol. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 845–851, 2006  相似文献   

20.
Yun Hu  Harumi Sato  Yukihiro Ozaki 《Polymer》2007,48(16):4777-4785
The multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) (HHx = 12 mol%) isothermally crystallized from the melt state has been characterized by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The influence of different experimental variables (such as crystallization temperature, time, and heating rate) on the multiple melting behavior of P(HB-co-HHx) was investigated by using DSC. Moreover, it has been further examined by monitoring intensity changes of the characteristic IR bands during the subsequent heating process. For the isothermally crystallized P(HB-co-HHx) samples, triple melting peaks were observed upon heating. The weak lowest-temperature DSC endotherm I always appears at the position just above the crystallization temperature, and shifts to a higher temperature linearly with the logarithm of the crystallization time. The combination of DSC and IR results suggested that the occurrence of peak I was a result of the melting of crystals formed upon long-time annealing. As for the other two main melting endothermic peaks, endotherm II corresponds to the melting of crystals formed during the primary crystallization, and endotherm III is ascribed to the melting peak of the crystals formed by recrystallization during the heating process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号