首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐dimensional finite ‘crack’ elements for simulation of propagating cracks are developed using the moving least‐square (MLS) approximation. The mapping from the parental domain to the physical element domain is implicitly obtained from MLS approximation, with the shape functions and their derivatives calculated and saved only at the numerical integration points. The MLS‐based variable‐node elements are extended to construct the crack elements, which allow the discontinuity of crack faces and the crack‐tip singularity. The accuracy of the crack elements is checked by calculating the stress intensity factor under mode I loading. The crack elements turn out to be very efficient and accurate for simulating crack propagations, only with the minimal amount of element adjustment and node addition as the crack tip moves. Numerical results and comparison to the results from other works demonstrate the effectiveness and accuracy of the present scheme for the crack elements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper the meshless local boundary integral equation (LBIE) method for numerically solving the non‐linear two‐dimensional sine‐Gordon (SG) equation is developed. The method is based on the LBIE with moving least‐squares (MLS) approximation. For the MLS, nodal points spread over the analyzed domain are utilized to approximate the interior and boundary variables. The approximation functions are constructed entirely using a set of scattered nodes, and no element or connectivity of the nodes is needed for either the interpolation or the integration purposes. A time‐stepping method is employed to deal with the time derivative and a simple predictor–corrector scheme is performed to eliminate the non‐linearity. A brief discussion is outlined for numerical integrations in the proposed algorithm. Some examples involving line and ring solitons are demonstrated and the conservation of energy in undamped SG equation is investigated. The final numerical results confirm the ability of method to deal with the unsteady non‐linear problems in large domains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This work presents a new implementation of the boundary node method (BNM) for numerical solution of Laplace's equation. By coupling the boundary integral equations and the moving least‐squares (MLS) approximation, the BNM is a boundary‐type meshless method. However, it still uses the standard elements for boundary integration and approximation of the geometry, thus loses the advantages of the meshless methods. In our implementation, here called the boundary face method, the boundary integration is performed on boundary faces, which are represented in parametric form exactly as the boundary representation data structure in solid modeling. The integrand quantities, such as the coordinates of Gauss integration points, Jacobian and out normal are calculated directly from the faces rather than from elements. In order to deal with thin structures, a mixed variable interpolation scheme of 1‐D MLS and Lagrange Polynomial for long and narrow faces. An adaptive integration scheme for nearly singular integrals has been developed. Numerical examples show that our implementation can provide much more accurate results than the BNM, and keep reasonable accuracy in some extreme cases, such as very irregular distribution of nodes and thin shells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a new computational strategy for two‐dimensional contact problems is developed with the aid of variable‐node finite elements within the range of infinitesimal deformations. The variable‐node elements, which are among MLS (moving least square)‐based finite elements, enable us to transform node‐to‐surface contact problems into node‐to‐node contact problems. This contact formulation with variable‐node elements leads to an accurate and effective solution procedure, needless to mention that the contact patch test is passed without any additional treatment. Through several numerical examples, we demonstrate its simplicity and the effectiveness of the proposed scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Quasi‐conforming formulations of 4‐node stress‐resultant shell elements are presented. The element formulations use interrelated displacement–rotation interpolations. The formulation also includes drilling degrees of freedom, which improves membrane behavior and allows the modeling of stiffened plates and shells. The proposed treatment for bending provides very good results in the 4‐node shell element. The stiffness matrices for the present elements are explicitly expressed and the stresses are taken accurately at the nodal points. Compared to elements using Gauss integration, where the stresses are most accurate at the integration points, the extrapolation procedure needed for post‐processing is eliminated in the present shell element. A lot of numerical tests were carried out for the validation of the present 4‐node shell element and the results are in good agreement with references. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a two‐dimensional displacement‐based meshfree‐enriched FEM (ME‐FEM) is presented for the linear analysis of compressible and near‐incompressible planar elasticity. The ME‐FEM element is established by injecting a first‐order convex meshfree approximation into a low‐order finite element with an additional node. The convex meshfree approximation is constructed using the generalized meshfree approximation method and it possesses the Kronecker‐delta property on the element boundaries. The gradient matrix of ME‐FEM element satisfies the integration constraint for nodal integration and the resultant ME‐FEM formulation is shown to pass the constant stress test for the compressible media. The ME‐FEM interpolation is an element‐wise meshfree interpolation and is proven to be discrete divergence‐free in the incompressible limit. To prevent possible pressure oscillation in the near‐incompressible problems, an area‐weighted strain smoothing scheme incorporated with the divergence‐free ME‐FEM interpolation is introduced to provide the smoothing on strains and pressure. With this smoothed strain field, the discrete equations are derived based on a modified Hu–Washizu variational principle. Several numerical examples are presented to demonstrate the effectiveness of the proposed method for the compressible and near‐incompressible problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Based on the moving least‐squares (MLS) approximation, we propose a new approximation method—the complex variable moving least‐squares (CVMLS) approximation. With the CVMLS approximation, the trial function of a two‐dimensional problem is formed with a one‐dimensional basis function. The number of unknown coefficients in the trial function of the CVMLS approximation is less than in the trial function of the MLS approximation, and we can thus select fewer nodes in the meshless method that is formed from the CVMLS approximation than are required in the meshless method of the MLS approximation with no loss of precision. The meshless method that is derived from the CVMLS approximation also has a greater computational efficiency. From the CVMLS approximation, we propose a new meshless method for two‐dimensional elasticity problems—the complex variable meshless method (CVMM)—and the formulae of the CVMM for two‐dimensional elasticity problems are obtained. Compared with the conventional meshless method, the CVMM has a greater precision and computational efficiency. For the purposes of demonstration, some selected numerical examples are solved using the CVMM. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A strategy for a two‐dimensional contact analysis involving finite strain plasticity is developed with the aid of variable‐node elements. The variable‐node elements, in which nodes are added freely where they are needed, make it possible to transform the non‐matching meshes into matching meshes directly. They thereby facilitate an efficient analysis, maintaining node‐to‐node contact during the contact deformation. The contact patch test, wherein the contact patch is constructed out of variable‐node elements, is thus passed, and iterations for equilibrium solutions reach convergence faster in this scheme than in the conventional approach based on the node‐to‐surface contact. The effectiveness and accuracy of the proposed scheme are demonstrated through several numerical examples of elasto‐plastic contact analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
An efficient, four‐node quadrilateral shell element is formulated using a linear, first‐order shear deformation theory. The bending part of the formulation is constructed from a cross‐diagonal assembly of four three‐node anisoparametric triangular plate elements, referred to as MIN3. Closed‐form constraint equations, which arise from the Kirchhoff constraints in the thin‐plate limit, are derived and used to eliminate the degrees‐of‐freedom associated with the ‘internal’ node of the cross‐diagonal assembly. The membrane displacement field employs an Allman‐type, drilling degrees‐of‐freedom formulation. The result is a displacement‐based, fully integrated, four‐node quadrilateral element, MIN4T, possessing six degrees‐of‐freedom at each node. Results for a set of validation plate problems demonstrate that the four‐node MIN4T has similar robustness and accuracy characteristics as the original cross‐diagonal assembly of MIN3 elements involving five nodes. The element performs well in both moderately thick and thin regimes, and it is free of shear locking. Shell validation results demonstrate superior performance of MIN4T over MIN3, possibly as a result of its higher‐order interpolation of the membrane displacements. It is also noted that the bending formulation of MIN4T is kinematically compatible with the existing anisoparametric elements of the same order of approximation, which include a two‐node Timoshenko beam element and a three‐node plate element, MIN3. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
A small strain, three‐dimensional, elastic and elastoplastic Element‐Free Galerkin (EFG) formulation is developed. Singular weight functions are utilized in the Moving‐Least‐Squares (MLS) determination of shape functions and shape function derivatives allowing accurate, direct nodal imposition of essential boundary conditions. A variable domain of influence EFG method is introduced leading to increased efficiency in computing the MLS shape functions and their derivatives. The elastoplastic formulations are based on the consistent tangent operator approach and closely follow the incremental formulations for non‐linear analysis using finite elements. Several linear elastic and small strain elastoplastic numerical examples are presented to verify the accuracy of the numerical formulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
We present a family of approximation schemes, which we refer to as second‐order maximum‐entropy (max‐ent) approximation schemes, that extends the first‐order local max‐ent approximation schemes to second‐order consistency. This method retains the fundamental properties of first‐order max‐ent schemes, namely the shape functions are smooth, non‐negative, and satisfy a weak Kronecker‐delta property at the boundary. This last property makes the imposition of essential boundary conditions in the numerical solution of partial differential equations trivial. The evaluation of the shape functions is not explicit, but it is very efficient and robust. To our knowledge, the proposed method is the first higher‐order scheme for function approximation from unstructured data in arbitrary dimensions with non‐negative shape functions. As a consequence, the approximants exhibit variation diminishing properties, as well as an excellent behavior in structural vibrations problems as compared with the Lagrange finite elements, MLS‐based meshfree methods and even B‐Spline approximations, as shown through numerical experiments. When compared with usual MLS‐based second‐order meshfree methods, the shape functions presented here are much easier to integrate in a Galerkin approach, as illustrated by the standard benchmark problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The hybrid boundary node method (HBNM) retains the meshless attribute of the moving least squares (MLS) approximation and the reduced dimensionality advantages of the boundary element method. However, the HBNM inherits the deficiency of the MLS approximation, in which shape functions lack the delta function property. Thus in the HBNM, boundary conditions are implemented after they are transformed into their approximations on the boundary nodes with the MLS scheme.This paper combines the hybrid displacement variational formulation and the radial basis point interpolation to develop a direct boundary-type meshless method, the hybrid radial boundary node method (HRBNM) for two-dimensional potential problems. The HRBNM is truly meshless, i.e. absolutely no elements are required either for interpolation or for integration. The radial basis point interpolation is used to construct shape functions with delta function property. So unlike the HBNM, the HRBNM is a direct numerical method in which the basic unknown quantity is the real solution of nodal variables, and boundary conditions can be applied directly and easily, which leads to greater computational precision. Some selected numerical tests illustrate the efficiency of the method proposed.  相似文献   

13.
It is well known that the lower bound to exact solutions in linear fracture problems can be easily obtained by the displacement compatible finite element method (FEM) together with the singular crack tip elements. It is, however, much more difficult to obtain the upper bound solutions for these problems. This paper aims to formulate a novel singular node‐based smoothed finite element method (NS‐FEM) to obtain the upper bound solutions for fracture problems. In the present singular NS‐FEM, the calculation of the system stiffness matrix is performed using the strain smoothing technique over the smoothing domains (SDs) associated with nodes, which leads to the line integrations using only the shape function values along the boundaries of the SDs. A five‐node singular crack tip element is used within the framework of NS‐FEM to construct singular shape functions via direct point interpolation with proper order of fractional basis. The mix‐mode stress intensity factors are evaluated using the domain forms of the interaction integrals. The upper bound solutions of the present singular NS‐FEM are demonstrated via benchmark examples for a wide range of material combinations and boundary conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The Smooth‐Particle‐Hydrodynamics (SPH) method is derived in a novel manner by means of a Galerkin approximation applied to the Lagrangian equations of continuum mechanics as in the finite‐element method. This derivation is modified to replace the SPH interpolant with the Moving‐Least‐Squares (MLS) interpolant of Lancaster and Saulkaskas, and define a new particle volume which ensures thermodynamic compatibility. A variable‐rank modification of the MLS interpolants which retains their desirable summation properties is introduced to remove the singularities that occur when divergent flow reduces the number of neighbours of a particle to less than the minimum required. A surprise benefit of the Galerkin SPH derivation is a theoretical justification of a common ad hoc technique for variable‐h SPH. The new MLSPH method is conservative if an anti‐symmetric quadrature rule for the stiffness matrix elements can be supplied. In this paper, a simple one‐point collocation rule is used to retain similarity with SPH, leading to a non‐conservative method. Several examples document how MLSPH renders dramatic improvements due to the linear consistency of its gradients on three canonical difficulties of the SPH method: spurious boundary effects, erroneous rates of strain and rotation and tension instability. Two of these examples are non‐linear Lagrangian patch tests with analytic solutions with which MLSPH agrees almost exactly. The examples also show that MLSPH is not absolutely stable if the problems are run to very long times. A linear stability analysis explains both why it is more stable than SPH and not yet absolutely stable and an argument is made that for realistic dynamic problems MLSPH is stable enough. The notion of coherent particles, for which the numerical stability is identical to the physical stability, is introduced. The new method is easily retrofitted into a generic SPH code and some observations on performance are made. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The paper presents a spatial Timoshenko beam element with a total Lagrangian formulation. The element is based on curvature interpolation that is independent of the rigid‐body motion of the beam element and simplifies the formulation. The section response is derived from plane section kinematics. A two‐node beam element with constant curvature is relatively simple to formulate and exhibits excellent numerical convergence. The formulation is extended to N‐node elements with polynomial curvature interpolation. Models with moderate discretization yield results of sufficient accuracy with a small number of iterations at each load step. Generalized second‐order stress resultants are identified and the section response takes into account non‐linear material behaviour. Green–Lagrange strains are expressed in terms of section curvature and shear distortion, whose first and second variations are functions of node displacements and rotations. A symmetric tangent stiffness matrix is derived by consistent linearization and an iterative acceleration method is used to improve numerical convergence for hyperelastic materials. The comparison of analytical results with numerical simulations in the literature demonstrates the consistency, accuracy and superior numerical performance of the proposed element. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Accuracy and efficiency are the main features expected in finite element method. In the field of low‐order formulations, the treatment of locking phenomena is crucial to prevent poor results. For three‐dimensional analysis, the development of efficient and accurate eight‐node solid‐shell finite elements has been the principal goal of a number of recent published works. When modelling thin‐ and thick‐walled applications, the well‐known transverse shear and volumetric locking phenomena should be conveniently circumvented. In this work, the enhanced assumed strain method and a reduced in‐plane integration scheme are combined to produce a new eight‐node solid‐shell element, accommodating the use of any number of integration points along thickness direction. Furthermore, a physical stabilization procedure is employed in order to correct the element's rank deficiency. Several factors contribute to the high computational efficiency of the formulation, namely: (i) the use of only one internal variable per element for the enhanced part of the strain field; (ii) the reduced integration scheme; (iii) the prevention of using multiple elements' layers along thickness, which can be simply replaced by any number of integration points within a single element layer. Implementation guidelines and numerical results confirm the robustness and efficiency of the proposed approach when compared to conventional elements well‐established in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, we first discuss the moving least‐square approximation (MLS) method. In some cases, the MLS may form an ill‐conditioned system of equations so that the solution cannot be correctly obtained. Hence, in this paper, we propose an improved moving least‐square approximation (IMLS) method. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill‐conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation method, a direct meshless BIE method, the boundary element‐free method (BEFM), for two‐dimensional elasticity is presented. Compared to other meshless BIE methods, BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied easily; hence, it has higher computational precision. For demonstration purpose, selected numerical examples are given. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Two simple 4‐node 20‐DOF and 4‐node 24‐DOF displacement‐based quadrilateral elements named RDKQ‐L20 and RDKQ‐L24 are developed in this paper based on the first‐order shear deformation theory (FSDT) for linear analysis of thin to moderately thick laminates. The deflection and rotation functions of the element sides are obtained from Timoshenko's laminated composite beam functions. Linear displacement interpolation functions of the standard 4‐node quadrilateral isoparametric plane element and displacement functions of a quadrilateral plane element with drilling degrees of freedom are taken as in‐plane displacements of the proposed elements RDKQ‐L20 and RDKQ‐L24, respectively. Due to the application of Timoshenko's laminated composite beam functions, convergence can be ensured theoretically for very thin laminates. The elements are simple in formulation, and shear‐locking free for extremely thin laminates even with full integration. A hybrid‐enhanced procedure is employed to improve the accuracy of stress analysis, especially for transverse shear stresses. Numerical tests show that the new elements are convergent, not sensitive to mesh distortion, accurate and efficient for analysis of thin to moderately thick laminates. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The meshless method is expected to become an effective procedure for realizing a CAD/CAE seamless system for analyses ranging from modelling to computation, because time‐consuming mesh generation processes are not required. In the present study, a new meshless approach, referred to as the Node‐By‐Node Meshless method is proposed, in which only nodal data is utilized to discretize the governing equations, which are derived using either the principle of virtual work or the Galerkin method. In this method, three key methodologies are utilized: (i) nodal integration using stabilization terms, (ii) interpolation by the Moving Least‐Squares Method, and (iii) a node‐by‐node iterative solver. This paper presents the formulation of the proposed method along with numerical results obtained for two‐dimensional elastostatic and eigenvalue problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号