共查询到20条相似文献,搜索用时 15 毫秒
1.
Young‐Sam Cho Seyoung Im 《International journal for numerical methods in engineering》2006,65(4):517-547
Two‐dimensional finite ‘crack’ elements for simulation of propagating cracks are developed using the moving least‐square (MLS) approximation. The mapping from the parental domain to the physical element domain is implicitly obtained from MLS approximation, with the shape functions and their derivatives calculated and saved only at the numerical integration points. The MLS‐based variable‐node elements are extended to construct the crack elements, which allow the discontinuity of crack faces and the crack‐tip singularity. The accuracy of the crack elements is checked by calculating the stress intensity factor under mode I loading. The crack elements turn out to be very efficient and accurate for simulating crack propagations, only with the minimal amount of element adjustment and node addition as the crack tip moves. Numerical results and comparison to the results from other works demonstrate the effectiveness and accuracy of the present scheme for the crack elements. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
2.
3.
Jong Hoon Kim Jae Hyuk Lim Jun Ho Lee Seyoung Im 《International journal for numerical methods in engineering》2008,73(13):1966-1988
In this paper, a new computational strategy for two‐dimensional contact problems is developed with the aid of variable‐node finite elements within the range of infinitesimal deformations. The variable‐node elements, which are among MLS (moving least square)‐based finite elements, enable us to transform node‐to‐surface contact problems into node‐to‐node contact problems. This contact formulation with variable‐node elements leads to an accurate and effective solution procedure, needless to mention that the contact patch test is passed without any additional treatment. Through several numerical examples, we demonstrate its simplicity and the effectiveness of the proposed scheme. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
4.
Xiangmin Jiao Michael T. Heath 《International journal for numerical methods in engineering》2004,61(14):2402-2427
In multiphysics simulations using a partitioned approach, each physics component solves on its own mesh, and the interfaces between these meshes are in general non‐matching. Simulation data (e.g. jump conditions) must be exchanged across the interface meshes between physics components. It is highly desirable for such data transfers to be both numerically accurate and physically conservative. This paper presents accurate, conservative, and efficient data transfer algorithms utilizing a common refinement of two non‐matching surface meshes. Our methods minimize errors in a certain norm while achieving strict conservation. Some traditional methods for data transfer and related problems are also reviewed and compared with our methods. Numerical results demonstrate significant advantages of common‐refinement based methods, especially for repeated transfers. While the comparisons are performed with matching geometries, this paper also addresses additional complexities associated with non‐matching surface meshes and presents some experimental results from 3‐D simulations using our methods. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
5.
P. Farah A.‐T. Vuong W.A. Wall A. Popp 《International journal for numerical methods in engineering》2016,108(12):1550-1576
In finite element analysis of volume coupled multiphysics, different meshes for the involved physical fields are often highly desirable in terms of solution accuracy and computational costs. We present a general methodology for volumetric coupling of different meshes within a monolithic solution scheme. A straightforward collocation approach is compared to a mortar‐based method for nodal information transfer. For the latter, dual shape functions based on the biorthogonality concept are used to build the projection matrices, thus further reducing the evaluation costs. We give a detailed explanation of the integration scheme and the construction of dual shape functions for general first‐order and second‐order Langrangian finite elements within the mortar method, as well as an analysis of the conservation properties of the projection operators. Moreover, possible incompatibilities due to different geometric approximations of curved boundaries are discussed. Numerical examples demonstrate the flexibility of the presented mortar approach for arbitrary finite element combinations in two and three dimensions and its applicability to different multiphysics coupling scenarios. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
6.
B. Herry L. Di Valentin A. Combescure 《International journal for numerical methods in engineering》2002,55(8):973-1003
This paper describes a general method for coupling non‐matching linear finite element meshes in transient dynamic analysis. We propose a method based on Schur's dual formulation whose main advantage is to provide equilibrium as well as kinematic continuity throughout the interface. The essence of our work lies in the particular discretization of the space of Lagrange multipliers and in the validation of the method through two‐ and three‐dimensional static calculations as well as two‐dimensional dynamic calculations. An example is also presented and the results are compared to those of the mortar method. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
7.
C. A. Duarte T. J. Liszka W. W. Tworzydlo 《International journal for numerical methods in engineering》2007,69(11):2409-2440
In spite of significant advancements in automatic mesh generation during the past decade, the construction of quality finite element discretizations on complex three‐dimensional domains is still a difficult and time demanding task. In this paper, the partition of unity framework used in the generalized finite element method (GFEM) is exploited to create a very robust and flexible method capable of using meshes that are unacceptable for the finite element method, while retaining its accuracy and computational efficiency. This is accomplished not by changing the mesh but instead by clustering groups of nodes and elements. The clusters define a modified finite element partition of unity that is constant over part of the clusters. This so‐called clustered partition of unity is then enriched to the desired order using the framework of the GFEM. The proposed generalized finite element method can correctly and efficiently deal with: (i) elements with negative Jacobian; (ii) excessively fine meshes created by automatic mesh generators; (iii) meshes consisting of several sub‐domains with non‐matching interfaces. Under such relaxed requirements for an acceptable mesh, and for correctly defined geometries, today's automated tetrahedral mesh generators can practically guarantee successful volume meshing that can be entirely hidden from the user. A detailed technical discussion of the proposed generalized finite element method with clustering along with numerical experiments and some implementation details are presented. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
8.
R. K. Jaiman X. Jiao P. H. Geubelle E. Loth 《International journal for numerical methods in engineering》2005,64(15):2014-2038
We present a detailed comparative study of three conservative schemes used to transfer interface loads in fluid–solid interaction simulations involving non‐matching meshes. The three load transfer schemes investigated are the node‐projection scheme, the quadrature‐projection scheme and the common‐refinement based scheme. The accuracy associated with these schemes is assessed with the aid of 2‐D fluid–solid interaction problems of increasing complexity. This includes a static load transfer and three transient problems, namely, elastic piston, superseismic shock and flexible inhibitor involving large deformations. We show how the load transfer schemes may affect the accuracy of the solutions along the fluid–solid interface and in the fluid and solid domains. We introduce a grid mismatching function which correlates well with the errors of the traditional load transfer schemes. We also compare the computational costs of these load transfer schemes. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
9.
A node‐to‐node scheme with the aid of variable‐node elements for elasto‐plastic contact analysis 下载免费PDF全文
Seungmin Jin Dongwoo Sohn Jae Hyuk Lim Seyoung Im 《International journal for numerical methods in engineering》2015,102(12):1761-1783
A strategy for a two‐dimensional contact analysis involving finite strain plasticity is developed with the aid of variable‐node elements. The variable‐node elements, in which nodes are added freely where they are needed, make it possible to transform the non‐matching meshes into matching meshes directly. They thereby facilitate an efficient analysis, maintaining node‐to‐node contact during the contact deformation. The contact patch test, wherein the contact patch is constructed out of variable‐node elements, is thus passed, and iterations for equilibrium solutions reach convergence faster in this scheme than in the conventional approach based on the node‐to‐surface contact. The effectiveness and accuracy of the proposed scheme are demonstrated through several numerical examples of elasto‐plastic contact analyses. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
K. M. Liew Yumin Cheng S. Kitipornchai 《International journal for numerical methods in engineering》2006,65(8):1310-1332
In this study, we first discuss the moving least‐square approximation (MLS) method. In some cases, the MLS may form an ill‐conditioned system of equations so that the solution cannot be correctly obtained. Hence, in this paper, we propose an improved moving least‐square approximation (IMLS) method. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill‐conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation method, a direct meshless BIE method, the boundary element‐free method (BEFM), for two‐dimensional elasticity is presented. Compared to other meshless BIE methods, BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied easily; hence, it has higher computational precision. For demonstration purpose, selected numerical examples are given. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
Chongbin Zhao B. E. Hobbs H. B. Mühlhaus A. Ord 《International journal for numerical methods in engineering》1999,45(10):1509-1526
To translate and transfer solution data between two totally different meshes (i.e. mesh 1 and mesh 2), a consistent point‐searching algorithm for solution interpolation in unstructured meshes consisting of 4‐node bilinear quadrilateral elements is presented in this paper. The proposed algorithm has the following significant advantages: (1) The use of a point‐searching strategy allows a point in one mesh to be accurately related to an element (containing this point) in another mesh. Thus, to translate/transfer the solution of any particular point from mesh 2 to mesh 1, only one element in mesh 2 needs to be inversely mapped. This certainly minimizes the number of elements, to which the inverse mapping is applied. In this regard, the present algorithm is very effective and efficient. (2) Analytical solutions to the local co‐ordinates of any point in a four‐node quadrilateral element, which are derived in a rigorous mathematical manner in the context of this paper, make it possible to carry out an inverse mapping process very effectively and efficiently. (3) The use of consistent interpolation enables the interpolated solution to be compatible with an original solution and, therefore guarantees the interpolated solution of extremely high accuracy. After the mathematical formulations of the algorithm are presented, the algorithm is tested and validated through a challenging problem. The related results from the test problem have demonstrated the generality, accuracy, effectiveness, efficiency and robustness of the proposed consistent point‐searching algorithm. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
12.
R. Vodička V. Mantič F. París 《International journal for numerical methods in engineering》2010,83(1):91-128
An original approach to the solution of linear elastic domain decomposition problems by the symmetric Galerkin boundary element method is developed. The approach is based on searching for the saddle‐point of a new potential energy functional with Lagrange multipliers. The interfaces can be either straight or curved, open or closed. The two coupling conditions, equilibrium and compatibility, along an interface are fulfilled in a weak sense by means of Lagrange multipliers (interface displacements and tractions), which enables non‐matching meshes to be used at both sides of interfaces between subdomains. The accuracy and robustness of the method is tested by several numerical examples, where the numerical results are compared with the analytical solution of the solved problems, and the convergence rates of two error norms are evaluated for h‐refinements of matching and non‐matching boundary element meshes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
C. H. Kim K. Y. Sze Y. H. Kim 《International journal for numerical methods in engineering》2003,57(14):2077-2097
Compared to the large number of curved quadrilateral degenerated‐ and solid‐shell elements, there are only a very few curved triangular degenerated‐ and solid‐shell elements. Based on the assumed natural strain sampling scheme previously developed for a quadratic degenerated‐shell element for linear analysis, this paper devises geometric non‐linear six‐node degenerated‐shell and twelve‐node solid‐shell elements. Both elements can be curved and are only equipped with the standard nodal d.o.f.s. Careful consideration has been exercised to circumvent various locking phenomena that plague degenerated‐ and solid‐shell elements. Numerical examples are presented to illustrate their efficacy. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
14.
S. Ganguly J. B. Layton C. Balakrishna 《International journal for numerical methods in engineering》2004,59(8):1021-1038
When the different parts of a structure are modelled independently by BEM or FEM methods, it is sometimes necessary to put the parts together without remeshing of the nodes along the part interfaces. Frequently the nodes do not match along the interface. In this work, the symmetric Galerkin multi‐zone curved boundary element is a fully symmetric formulation and is the method used for the boundary element part. For BEM–FEM coupling it is then necessary to interpolate the tractions in‐between the non‐matching nodes for the FEM part. Finally, the coupling is achieved by transforming the finite element domains to equivalent boundary element domains in a block symmetric formulation. This system is then coupled with a boundary element domain with non‐matching nodes in‐between. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
15.
Gary A. Dilts 《International journal for numerical methods in engineering》1999,44(8):1115-1155
The Smooth‐Particle‐Hydrodynamics (SPH) method is derived in a novel manner by means of a Galerkin approximation applied to the Lagrangian equations of continuum mechanics as in the finite‐element method. This derivation is modified to replace the SPH interpolant with the Moving‐Least‐Squares (MLS) interpolant of Lancaster and Saulkaskas, and define a new particle volume which ensures thermodynamic compatibility. A variable‐rank modification of the MLS interpolants which retains their desirable summation properties is introduced to remove the singularities that occur when divergent flow reduces the number of neighbours of a particle to less than the minimum required. A surprise benefit of the Galerkin SPH derivation is a theoretical justification of a common ad hoc technique for variable‐h SPH. The new MLSPH method is conservative if an anti‐symmetric quadrature rule for the stiffness matrix elements can be supplied. In this paper, a simple one‐point collocation rule is used to retain similarity with SPH, leading to a non‐conservative method. Several examples document how MLSPH renders dramatic improvements due to the linear consistency of its gradients on three canonical difficulties of the SPH method: spurious boundary effects, erroneous rates of strain and rotation and tension instability. Two of these examples are non‐linear Lagrangian patch tests with analytic solutions with which MLSPH agrees almost exactly. The examples also show that MLSPH is not absolutely stable if the problems are run to very long times. A linear stability analysis explains both why it is more stable than SPH and not yet absolutely stable and an argument is made that for realistic dynamic problems MLSPH is stable enough. The notion of coherent particles, for which the numerical stability is identical to the physical stability, is introduced. The new method is easily retrofitted into a generic SPH code and some observations on performance are made. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
16.
Chan Lee Hobeom Kim Seyoung Im 《International journal for numerical methods in engineering》2017,110(11):1069-1100
The node‐based or edge‐based smoothed finite element method is extended to develop polyhedral elements that are allowed to have an arbitrary number of nodes or faces, and so retain a good geometric adaptability. The strain smoothing technique and implicit shape functions based on the linear point interpolation make the element formulation simple and straightforward. The resulting polyhedral elements are free from the excessive zero‐energy modes and yield a robust solution very much insensitive to mesh distortion. Several numerical examples within the framework of linear elasticity demonstrate the accuracy and convergence behavior. The smoothed finite element method‐based polyhedral elements in general yield solutions of better accuracy and faster convergence rate than those of the conventional finite element methods. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
Chang‐Koon Choi Tae‐Yeol Lee Keun‐Young Chung 《International journal for numerical methods in engineering》2002,55(12):1463-1476
A unified approach to eliminate the undesirable lockings in distorted meshes for both non‐conforming quadrilateral membrane and hexahedral elements with drilling (or rotational) degrees of freedom is presented. The direct modification scheme is utilized in the formulation of non‐conforming modes to improve the general behaviour of isoparametric‐based elements. It is shown that the direct modification is very effective in eliminating the locking and this improvement of element behaviour may be doubled if the selective integration scheme is used simultaneously. To verify the validity of elements formulated by the proposed schemes and to evaluate their effectiveness, several numerical tests are carried out. The combined use of additional non‐conforming modes with the direct modification method and the selective integration technique plays an important role to improve the behaviour of elements, especially for distorted mesh cases. Test results also show that the results for both non‐conforming quadrilateral membrane and hexahedral elements obtained by the proposed schemes are equally satisfactory. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
18.
The dimension splitting and improved complex variable element‐free Galerkin method for 3‐dimensional transient heat conduction problems 下载免费PDF全文
H. Cheng M.J. Peng Y.M. Cheng 《International journal for numerical methods in engineering》2018,114(3):321-345
In this paper, by combining the dimension splitting method and the improved complex variable element‐free Galerkin method, the dimension splitting and improved complex variable element‐free Galerkin (DS‐ICVEFG) method is presented for 3‐dimensional (3D) transient heat conduction problems. Using the dimension splitting method, a 3D transient heat conduction problem is translated into a series of 2‐dimensional ones, which can be solved with the improved complex variable element‐free Galerkin (ICVEFG) method. In the ICVEFG method for each 2‐dimensional problem, the improved complex variable moving least‐square approximation is used to obtain the shape functions, and the penalty method is used to apply the essential boundary conditions. Finite difference method is used in the 1‐dimensional direction, and the Galerkin weak form of 3D transient heat conduction problem is used to obtain the final discretized equations. Then, the DS‐ICVEFG method for 3D transient heat conduction problems is presented. Four numerical examples are given to show that the new method has higher computational precision and efficiency. 相似文献
19.
C.R. Dohrmann M. W. Heinstein J. Jung S. W. Key W. R. Witkowski 《International journal for numerical methods in engineering》2000,47(9):1549-1568
Node‐based uniform strain elements for three‐node triangular and four‐node tetrahedral meshes are presented. The elements use the linear interpolation functions of the original mesh, but each element is associated with a single node. As a result, a favourable constraint ratio for the volumetric response is obtained for problems in solid mechanics. The uniform strain elements do not require the introduction of additional degrees of freedom and their performance is shown to be significantly better than that of three‐node triangular or four‐node tetrahedral elements. In addition, nodes inside the boundary of the mesh are observed to exhibit superconvergent behaviour for a set of example problems. Published in 2000 by John Wiley & Sons, Ltd. 相似文献
20.
Ahmed Z. I. Salem Scott A. Canann Sunil Saigal 《International journal for numerical methods in engineering》2001,50(1):181-197
A robust element distortion metric, based on the new concept of mid‐node admissible spaces, for two‐dimensional quadratic triangular finite elements is developed. The metric is based on the Jacobian determinant over the entire element, without requiring that it actually be computed everywhere on the element. The metric is relatively inexpensive to compute, especially for mildly distoted elements. The metric is able to detect elementsof poor quality that other distortion metrics fall to detect. It also has the ability to approve elements of good quality regardless of the extent to which they may appear geometrically distorted. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献