首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An attempt has been taken to investigate the microstructure and mass transfer properties of polycaprolactone diol (Mn = 2000 g mol–1, PCL 2000)‐based dense segmented polyurethane (SPU) membrane as a function of hard segment (HS) content. Structure of SPUs were investigated by Fourier transform infrared analysis, wide angle X‐ray diffraction, differential scanning calorimetry, dynamic mechanical thermal analysis, and scanning electron microscopy (SEM). On the other hand, mass transfer properties were measured by equilibrium sorption, dynamic sorption, and water vapor permeability measurements. From the experimental results, it was observed that with the increasing HS content in SPU the percentage crystallinity decreases, whereas the glassy state storage modulus increases. α transition temperature of polyurethane copolymers also increases with increasing HS content. SEM micrograph shows the dense surface structure of SPU films. Mass transfer rate of dense polyurethane membranes decreases with increasing HS content. In contrast, hydrophilic segment and soft segment crystal melting could enhance the mass transfer properties. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

2.
This work investigates the influence of functionalized multiwall carbon nanotube (MWNT) on microstructure and water vapor transport properties of segmented polyurethane (SPU) membranes. SPUs were reinforced with four different concentration of MWNT viz. 0.25, 0.50, 1.0, and 2.5 wt%. Presence of the microcrystals in all SPU‐MWNT composite membranes was detected by wide angle X‐ray diffraction (WAXD). The percent crystallinity of SPU‐MWNT at 0.25 wt% content of MWNT was increased slightly when compared with the pristine SPU sample. However, further increase of MWNT decreases the order structure. Glass transition temperature was increases with increasing MWNT content in the SPUs, which signifies that MWNT could also affect the amorphous region of SPU. WAXD and transmission electron microscopy (TEM) results evidenced the interaction between SPUs and MWNT. In comparing the water vapor transport properties of MWNT‐SPU composite membranes, it was observed that at 0.25 wt% of MWNT in SPU, water vapor transport property increases slightly at soft segment crystal melting temperature. Further increase of MWNT content has no significant influence on the water vapor transport properties. However, at 2.5 wt% of MWNT in SPU matrix, water vapor transport was decreases due to the increase of stiffness in the polymer chains. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
Two series of thermoplastic polyurethane elastomers [poly(propylene glycol) (PPG) based PP samples and poly(oxytetramethylene)glycol (PTMG) based PT samples] were synthesized from isophorone diisocyanate (IPDI)/1,4-butanediol (BD)/PPG and IPDI/BD/PTMG. The IPDI/BD based hard segments contents of polyurethane prepared in this study were 40–73 wt %. These polyurethane elastomers had a constant soft segment molecular weight (average Mn, 2000) but a variable hard segment block length (n, 3.5–17.5; average Mn, 1318–5544). Studies were made on the effects of the hard segment content on the dynamic mechanical thermal properties and elastic behaviors of polyurethane elastomers. These properties of PPG based PP and PTMG based PT samples were compared. As the hard segment contents of PP and PT samples increased, dynamic tensile modulus and α-type glass transition temperature (Tg) increased; however, the β-type Tg decreased. The permanent set (%) increased with increasing hard segment content and successive maximum elongation. The permanent set of the PT sample was lower than that of the PP sample at the same hard segment content. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1349–1355, 1998  相似文献   

4.
以聚己二酸丁二醇酯二醇 (PBA) ,聚四氢呋喃二醇 (PTMG)及聚氧化丙烯二醇 (PPG)为软段 ,以 4,4’ -二苯甲烷二异氰酸酯 (MDI)和 1,4-丁二醇为硬软 ,制备了一系列快速固化单组分聚氨酯反应型热熔胶 ,考察了不同软段对热熔胶的粘接强度、耐水性、耐热性、结晶度等的影响。结果表明 ,以PTMG为软段制得的热熔胶具有较佳的综合性能  相似文献   

5.
Thermoplastic polyurethane elastomers were prepared from 4,4‐diphenylmethane diisocyanate (MDI)/1,4‐butanediol (BD)/poly(propylene glycol) (PPG) and MDI/BD/poly(oxytetramethylene glycol) (PTMG). The MDI/BD‐based hard‐segment content of polyurethane prepared in this study was of 39–65 wt %. These polyurethane elastomers had a constant soft‐segment molecular weight (Mn , 2000), but a variable hard‐segment block length (n, 3.0–10.1; Mn , 1020–3434). The effects of the hard‐segment content on the thermal properties and elastic behavior were investigated. These properties of the PPG‐based MPP samples and the PTMG‐based MPT samples were compared. The polyurethane prepared in this study had a hard‐segment crystalline melting temperature in the range of 185.5–236.5°C. With increasing hard‐segment content, the dynamic storage modulus and glass transition temperature increased in both the MPP and MPT samples. The permanent set (%) increased with increasing hard‐segment content and successive maximum elongation. The permanent set (%) of the MPP samples was higher than that of MPT samples at the same hard‐segment content. The value of K (area of the hydrogen‐bonded carbonyl group/area of the free carbonyl group) increased with increasing hard‐segment content in both the MPP and MPT samples, and the K value of the MPT samples was higher than that of the MPP samples at the same hard‐segment content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 345–352, 1999  相似文献   

6.
The influence of diisocyanate and diol compounds of polyurethane and crosslinking agent on the separation of phenol aqueous solution by pervaporation was investigated. Polyurethanes were prepared by polyaddition of diisocyanate and diol compounds and trimethylolpropane (TMP) using dibutyltindilaulate as a catalyst. The polyurethane membrane was prepared by a casting method and was sandwiched with a porous polypropylene membrane (Celgard® 2500). Pervaporation measurement was carried out under vacuum on the permeate side, and the permeant was collected with a liquid nitrogen trap. Little influence of diisocyanate compounds on the phenol permselectivity through diisocyanate–polytetramethyleneglycol [PTMG(1000)] membranes was observed since the influence on the solubility and the diffusivity was small. The phenol permselectivity was increased with an increase in the molecular weight of PTMG and polycaprolactone diol (PCL) for the 1,6‐diisocyanato hexane (HMDI)–PTMG and HMDI–PCL membranes. It was considered that the increase in phenol diffusivity can be attributed to an increase in phenol selectivity. The permeability and selectivity of HMDI–[PTMG(2900)–TMP] membrane was relatively constant below the 2% TMP content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 439–448, 1999  相似文献   

7.
通过将聚乙二醇(PEG)、聚己内酯(PCL)、聚乳酸(PLA)和聚四氢呋喃醚(PTMG)等不同特性的聚合物链段引入聚氨酯(PU)基体,制备了具有不同软段结构的聚氨酯泡沫塑料(PUF)。考察了不同软段分子链结构对PUF力学性能、热性能及在土壤中降解性能的影响。结果表明,随着软段中PEG或PLA含量的增加,PUF的拉伸强度下降;不同软段结构PUF的玻璃化转变温度顺序为:PTMG1000相似文献   

8.
Polyurethanes with multiblock copolymers of poly(?‐caprolactone) (PCL) and poly(tetramethylene oxide) glycol (PTMG) or poly(ethylene glycol) (PEG) as a soft segment were synthesized in situ via reactive extrusion from ?‐caprolactone (CL) and 4,4′‐diphenylmethane diisocyanate (MDI). The titanium alkoxide mixture generated from an ester‐exchange reaction between titanium propoxide [Ti(OPr)4], and excessive PTMG or PEG was used as an initiator and catalyst. Compared to the reported fabrication of polycaprolactone‐based polyurethane (PCLU), the in situ reactive extrusion preparation not only explored a new rapid route for the fabrication of PCLU but also offered a simplified, controllable approach for the production of PCLU in a successive mass scale. A series of PTMG–PCLUs and PEG–PCLUs with different PCL block‐average degrees of polymerization (DPn's) were prepared by only an adjustment of the relative concentration of CL in the reaction system, with a certain constant molar ratio of MDI to titanium alkoxide. 1H‐NMR, gel permeation chromatography, and differential scanning calorimetry results indicate that all of the CL monomers were converted in the polymerization, and the molecular weight of the copolymers was about 8 × 104 g/mol with a polydispersity index of approximate 2.4. With an increase in the PCL block‐average DPn in PTMG–PCLU from 25 to 40, the tensile strength increased from 16.5 to 22.7 MPa, and the melting point increased from 46.1 to 49.5°C. It was also verified by PEG–PCLU prepared with organic Ti of lowered content in the initiator mixture that the mechanical properties could be greatly affected and dropped with decreasing content of organic Ti in the initiator mixture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
An attempt has been made to investigate the effect of the block length of hydrophilic segments on the structure and mass transfer properties of segmented polyurethane (HSPU). Three different block lengths of hydrophilic poly(ethylene glycol) (PEG) segments were used, namely PEG‐200, PEG‐2000 and PEG‐3400, where the numbers indicate the molecular weight of the PEG in g mol?1. The HSPU were characterized using Fourier‐transform infrared (FTIR) spectroscopy, wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and tensile testing. Mass transfer properties were measured by sorption and water vapour flux (WVF) measurements. The control sample polyurethanes without PEG and a sample with PEG‐200 showed amorphous structure and an unclear phase separation as detected by WAXD, DSC and DMTA. There is evidence that the introduction of PEG blocks into the polyurethane matrix aids soft‐segment crystallization. The percentage crystallinity of soft segments was the highest with PEG‐2000 and an increase of PEG block length to 3400 g mol?1 resulted in a decrease in crystallinity. Mechanically, polyurethane without PEG is tough while percentage strain at maximum load increased with increasing block length of PEG. In addition, sorption and WVF increased linearly with increasing PEG block length and with temperature. The permeability of such HSPUs is a function of temperature and showed a good fit to an Arrhenius form. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
聚酯/聚醚混合型水性聚氨酯的合成及性能   总被引:1,自引:1,他引:0  
张浩 《聚氨酯工业》2010,25(4):39-41
以聚己二酸丙二醇酯(PPA)和聚四氢呋喃醚二醇(PTMG)为混合软段合成阴离子型水性聚氨酯(WPU),探讨了PPA与PTMG的摩尔比对WPU膜的伸长率及耐水性的影响。结果表明,随着PPA与PTMG的摩尔比的减少,合成的WPU成膜后的伸长率增加,拉伸强度有所降低,耐水性增强。  相似文献   

11.
聚氨酯弹性体的动态力学性能的影响因素   总被引:4,自引:0,他引:4  
综述了聚氨酯弹性体动态力学性能的多种影响因素,讨论了软段类型(聚酯和聚醚)、软段相对分子质量、硬段类型(二异氰酸酯和扩链剂)、硬软段质量分数对PU弹性体动态力学性能的影响。在PU弹性体中,聚酯软段比聚醚软段的Tg高,弹性模量依PPG、PEG、PTMG软段顺序增加。  相似文献   

12.
The structure‐property relationship of L ‐tyrosine‐based polyurethanes was demonstrated by using different polyols and diisocyanates. L ‐tyrosine‐based chain extender, desaminotyrosyl tyrosine hexyl ester (DTH), was used to synthesize a series of polyurethanes. Polyethylene glycol (PEG) or poly caprolactone diol (PCL) was used as the soft segment and hexamethylene diisocyanate (HDI) or dicyclohexylmethane 4,4′‐diisocyanate (HMDI) was used with DTH as the hard segment. The polyurethanes were characterized to investigate the effect of structure on different polyurethane properties. From FTIR and DSC, these polyurethanes exhibit a wide range of morphology from phase‐mixed to phase‐separated structure. The decreasing molecular weight of the PEG soft segment leads to relatively more phase mixed morphology whereas for PCL‐based polyurethanes the extent of phase mixing is less with decreasing PCL molecular weight. Results show that PCL‐based polyurethanes are mechanically stronger than PEG‐based polyurethanes but PCL‐based polyurethanes degrade slower and absorb less water compared with PEG‐based polyurethanes. The HMDI‐based polyurethanes are less crystalline and comparatively more hydrophobic than HDI‐based polyurethanes. The characterization results show that the polyurethane properties are directly related to the structure and can be varied easily for a different set of properties that are pertinent for biomaterial applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
This research was based on the study of the effects of H12MDI-1, 4BD PU soft segments on the physical properties and water vapor permeability of films cast from solvent evaporation or wet coagulation method. The soft segments studied included polyether, polyester, and polycaprolactone polydiols. The NCO/OH mol ratios of prepolymer were prepared by 2, 3, 4, 5, and 8, respectively. The chain lengths of the soft segments used were: PTMG of molecular weights 650, 1000, 2000, and 2900; PBA of 1000, 2000, and 3000. The results revealed that the polyether-based PU cast films had lower Tgs than the polyester-based PU films. In general, the polyether-based PU films shows the characters of higher water vapor permeability, lower breaking elongation, and higher breaking strength. Films with higher molecular weight soft segments in the polymer chains exhibited lower Tgs, lower breaking strength, higher breaking elongation, and higher water vapor permeability. As the hard segment contents were increased, the films exhibited higher Tgs. Films with higher hard-segment ratios had the highest breaking strength but the water vapor permeability, on the other hand, became lower. Films cast from the solvent evaporation method had higher breaking strength and higher breaking elongation but lower water vapor permeability than films cast from the wet coagulation method. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
High‐performance shape‐memory polyurethane block copolymers, prepared with two types of poly(tetramethylene glycol) (PTMG) used as soft segments, were investigated for their mechanical properties. Copolymers with a random or block soft‐segment arrangement had higher stresses at break and elongations at break than those with only one kind of PTMG. Random copolymers with fewer interchain interactions showed higher elongation than block copolymers. All the copolymers had shape‐recovery ratios higher than 80%. In dynamic mechanical testing, the glass‐transition behavior clearly depended on the soft‐segment arrangement: random copolymers had only one glass‐transition peak, whereas block copolymers showed two separate glass‐transition peaks. Overall, the control of the soft‐segment arrangement plays a vital role in the development of high‐performance shape‐memory polyurethane. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2410–2415, 2004  相似文献   

15.
This paper examines the effect of an ester-ether soft segment structure on the physical properties of synthesized WBPUs. The CET series, CPT series, and CMT series anionic waterborne polyurethane (WBPU) were prepared with PCL-PEG-PCL, PCL-PPG-PCL, and PCL-PTMG-PCL triblock copolydiol as the soft segment. These copolydiols were synthesized from polyethylene glycol (PEG), polypropylene glycol (PPG), or polytetramethylene glycol (PTMG), respectively, by end capping with caprolactone (CL). Particle size and its distribution, solvent absorption, thermal properties, and the mechanical properties of the WBPUs were studied. The particle size of WBPU dispersion was in the sequence of CET > CPT > CMT series. The CET series WBPU had better phase mixing between the soft and hard segment, whereas the CMT series WBPU had good phase separation and better mechanical properties. In addition, both the phase mixing and mechanical properties increased with PCL content, except for the CMT series WBPU.  相似文献   

16.
综合考虑聚酯型聚氨酯和聚醚型聚氨酯的特点,以聚己二酸丁二醇酯(PBAG)和聚乙二醇(PEG)混合作为软段,采用溶液预聚法制备了聚酯-聚醚混合型聚氨酯。考察了混合软段中PEG摩尔分数以及PEG相对分子质量对聚氨酯薄膜的表面接触角、吸水率、透湿率及力学性能的影响。结果表明,随着PEG摩尔分数的增大和PEG相对分子质量的增大,薄膜的接触角和拉伸强度降低,吸水率、透湿率增大。当PEG摩尔分数从0.28增加到0.71时,薄膜接触角从75.8°降低至63.5°,吸水率从25.7%增加到106.1%,透湿率从1226g/(m2·24h)增加到3408g/(m2·24h);PEG相对分子质量从1000增加到10000时,薄膜接触角从80.5°降到55.7°,吸水率从4.5%增加到356.4%,透湿率从733g/(m2·24h)增加到3577g/(m2.24h)。  相似文献   

17.
This article was focused on the effects of the NCO/OH molar ratio and 2,2-bis(hydroxyl methyl) propionic acid (DMPA) content during prepolymerization on the physical properties of synthesized waterborne polyurethane (WBPU) by using the polycaprolactone–poly(ethyl glycol)–polycaprolactone triblock copolydiol (PCL–PEG–PCL) as the soft segment. The results showed that the particle size of the WBPUs' dispersion decreased with a decreasing NCO/OH molar ratio or increasing DMPA content. Regarding thermal and mechanical properties, the WBPUs had a higher Tg's and lower Tm's and a higher breaking stress and a lower breaking strain of film with the NCO/OH molar ratio or DMPA content increase. The increasing NCO/OH molar ratio was advantageous to the water vapor permeability (WVP)-breaking stress balance, but the effect of the DMPA content on the WVP was not significant. The WBPU with PCL–PEG–PCL as the soft segment had a smaller particle size in dispersion and a better WVP-breaking stress balance than those of WBPU with the blending PCL and PEG as the soft segment. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1301–1311, 1998  相似文献   

18.
Polydimethylsiloxane polyurethane (PDMS‐PU), which was synthesized from PDMS as the soft segment, was blended into a variety of ester‐ or ether‐based soft‐segment waterborne polyurethanes with different concentrations to investigate the crystallization, thermal, and physical properties of the membrane formations. According to X‐ray analysis, the ether‐based PUs, synthesized from soft segments of poly(propylene glycol) (PPG1000) or poly(ethylene glycol) (PEG2000), were found to have maximum crystallinity at a 5% blending ratio of PDMS‐PU, but the ester‐based PU, synthesized from soft segments of polycaprolactone (PCL1250), had decreased crystallinity at a 5% blending ratio. Differential scanning calorimetric analysis revealed that the Tg,s values of PUs were highest when the blending ratio of PDMS‐PU was 5%–10%, except for PU from PCL1250. Moreover, ether‐based PUs showed maximum Tm,h values, but the Tm,h of the ester‐based PU was greatly reduced when PU with PCL1250 was blended with PDMS‐PU. In addition, the PU from PEG2000 had the highest melting entropy. Mechanical property analysis showed that the stress of ether‐based PUs would be increased when PUs were blended with a small amount of PDMS‐PU and that the stress of PU from poly(tetramethylene glycol) (PTMG1000) increased to its greatest value (20–30 MPa). On the other hand, the ester‐based PU, from PCL1250 blended with PDMS‐PU, would have reduced stress. On the whole, the stress and strain of PU from PEG1000 had excellent balance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 210–221, 2006  相似文献   

19.
This article examines the effects of the soft-segment composition on the structure and physical properties of waterborne polyurethane (WBPU) based on polycaprolactone–poly(ethylene glycol)–polycaprolactone (PCL–PEG–PCL) triblock copolydiol as the soft segment. The molecular weight of PEG in the soft-segment composition and soft-segment content (SSC) are varied in this study. The water-vapor permeability (WVP) for the WBPU-coated nylon fabric is also studied. The results showed that the glass transition temperatures (Tg's) of the soft segment decreased and its temperature range (ΔTg's) narrowed with increase of SSC up to 63 wt % and decrease of the PEG molecular weight. The dynamic mechanical analysis results showed that the α-peak height of the soft segment increased with SSC when the SSC was less than 63 wt %. However, when SSC was more than 63 wt %, the α-peak height became smaller with increasing SSC due to the crystallization of the soft segment. At the same SSC, the number of spherulites was reduced and the spherulites become larger with decrease of the PEG molecular weight. As for the mechanical properties of the WBPU cast film, the breaking stress decreased and the breaking elongation increased with increasing SSC or decreasing PEG molecular weight. For the WBPU-coated nylon fabrics, either higher SSC or higher PEG molecular weight improves the WVP. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:883–892, 1997  相似文献   

20.
Supermolecular structure of drug delivery system on the basis of segmented polyurethane (SPU) has been determined to control the release of anticancer drug, cyclophosphamide (CPh). It has been established that the phase separation in SPU is essentially intensified by means of both the increase of molecular weight for SPU's soft segments and CPh incorporation in the monolithic systems of polyethylene glycol‐based polyurethane. Infrared and proton NMR data indicate that CPh is hydrogenicly associated with a urethane group of hard segments. It has been determined that the drug‐concentrated domains of hard segments are microheterogeneously dispersed in the amorphous soft segments. These results indicate that a supermolecular structure design of SPU allows for control of the CPh release from the polymer matrix. Medical‐biological tests of the prepared polyurethane device have shown reduced toxic action of the cytostatic drug compared with injections. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 35–43, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号