首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
锂硫电池(LSBs)是一种高理论能量密度(2 600 Wh·kg-1)的储能器件,但反应迟滞以及多硫化锂(LiPS)的穿梭等问题严重限制了LSBs的发展。目前广泛认为,隔膜修饰层的功能化改性可以显著地提升LSBs的电化学特性。因此,主要综述了近年来LSBs隔膜修饰材料的最新进展,分别总结了金属类材料、框架材料、聚合物材料以及预锂化材料等隔膜修饰材料的作用机理及其LSBs实操储能性能,并讨论了理想的隔膜修饰材料,旨在为未来LSBs实际应用材料的开发利用提供有益的参考。  相似文献   

2.
锂硫电池因其具有较高的理论比容量和高能量密度被誉为下一代动力电池的最佳候选之一。引起研究者们的广泛关注,成为新型锂电池研究热点。隔膜作为电池的重要组成部分,起到解决多硫化锂穿梭效应和抑制锂枝晶的作用,是提升电池各方面性能的关键。商业膜因其具有良好的机械性能和适用于连续生产以及较低的成本,目前现阶段对隔膜的研究主要集中在对商业隔膜Celgard系列的改性方面。本文主要从改性隔膜涂层的种类和作用机理方面综述了锂硫电池隔膜改性的最新研究现状。  相似文献   

3.
文章综述了锂硫电池有机液态、凝胶聚合物和全固态电解质的研究进展;阐述了锂硫电池电解质现阶段研究工作中存在的问题,并展望了锂硫电池电解质未来的研究方向。  相似文献   

4.
锂硫电池作为高能量密度的二次电池存在硫的低导电性和多硫化物的穿梭效应等问题。通过制备高还原度的氧化石墨烯隔膜,并将其应用于锂硫电池。利用石墨烯片层形成的空间位阻和小介孔结构,可阻挡多硫化物的迁移以及其高导电性可减弱电池极化。在0. 2 C下,采用高还原氧化石墨烯隔膜的锂硫电池初始比容量达到了1 143. 2 m Ah/g,经过100次循环后容量保持率为74. 25%。此外,在2 C下仍有626. 1 m Ah/g的比容量。表明高还原氧化石墨烯隔膜可以有效提升锂硫电池的电化学性能,体现出卓越的长循环稳定性和杰出的倍率性能。  相似文献   

5.
本文利用聚丙烯腈(PAN)与聚偏氟乙烯(PVDF)的共混物,通过静电纺丝技术制备了PAN/PVDF的纳米纤维薄膜,然后通过真空抽滤的方法分别向纤维薄膜中抽滤纳米二氧化硅(SiO_2)和导电炭黑(Super P),最后将两张填充了不同纳米粒子的薄膜压制成一张锂硫电池隔膜。该隔膜在0. 2C电流测试下首圈放电比容量达到1268mAh/g,循环50圈后的放电比容量629 m Ah/g,并且在1C充放电循环100圈后其放电比容量还有680m Ah/g。与商业相比,该隔膜具有更好的电化学性能。  相似文献   

6.
锂硫电池具有较高的能量密度,可在单兵电源、无人机和乘用车领域应用. 锂硫电池以金属锂作为负极,使用时存在安全隐患. 由于锂金属表面的不均匀性,循环过程容易生成锂枝晶,使电池内部发生短路,起火燃烧. 锂硫电池的能量密度约为普通电池的3~5倍,在充放电过程中发热严重,电池本身过热容易引发电池热失控,造成起火甚至爆炸. 使用功能性隔膜可以抑制电池内部短路和热失控的发生,提升锂硫电池的安全性能,可一定程度上削弱循环过程中的飞梭效应. 本文综述了锂硫电池功能性隔膜改性工作的最新进展和未来的发展趋势.  相似文献   

7.
为了抑制锂硫(Li–S)电池中多硫化物的穿梭效应,制备了二维MWCNTs/MXene修饰的PP(聚丙烯)隔膜。以其组装的锂硫电池在0.5C下具有1 317.4 m A·h/g的初始放电比容量;经过100圈充放电循环后,保留了580 m A·h/g的放电容量,容量保持率为59.87%。  相似文献   

8.
杨蓉  邓坤发  刘晓艳  曲冶  雷京  任冰 《化工进展》2015,34(5):1340-1344
锂硫电池由于其高理论能量密度(2600W·h/kg)而受到了广泛的关注,是极具应用前景的电池体系.硫基正极材料作为锂硫电池的重要组成部分,是提高电池性能的关键.然而锂硫电池还存在一些问题,如硫的利用率低及正极结构的稳定性差等.本文综述了近几年锂硫电池硫正极复合材料的研究现状,分别从硫/碳复合、硫/导电聚合物复合、硫/氧化物复合3个方面进行介绍,指出了未来锂硫电池正极材料要注意结合硫/导电聚合物及硫/氧化物的优势并注重材料结构的设计,向核壳或类核壳结构方向发展的趋势,同时还要提高载硫量,提高循环稳定性,以获得高性能的锂硫电池.  相似文献   

9.
金玮 《化工进展》2022,41(8):4386-4396
锂硫电池具有较高的能量密度,是有发展前景的能量存储体系之一。但“穿梭效应”严重制约了锂硫电池的实际应用,为解决该问题,本文通过简单的一步热解法合成了孔径均匀的微孔碳材料,探究了微孔碳材料修饰隔膜后对锂硫电池性能的影响。结果表明,制备的微孔碳材料孔径集中在0.56nm左右,修饰隔膜后不仅能够有效抑制“穿梭效应”的产生,还有利于加快锂离子的传输,确保正极一侧溶解的多硫化物的再次利用。在0.1C的电流密度下,采用微孔碳材料修饰隔膜的电池首次放电比容量为1359mAh/g,循环100次之后容量能保持在966mAh/g,而修饰之前的传统聚丙烯隔膜,循环100次之后的比容量仅为409mAh/g;在1C的电流密度下循环500圈后,采用微孔碳材料修饰隔膜的电池容量保持率为88%,表现出优异的循环稳定性。  相似文献   

10.
11.
锂离子电池隔膜的研究及发展现状   总被引:2,自引:0,他引:2  
综述了隔膜主要作用及性能、国内外研究发展现状。重点叙述了隔膜的制备方法,对干法和湿法的原理、工艺及所制得的隔膜性能上的区别进行了详细的阐述;同时简单介绍了隔膜的改性研究现状和新型电池隔膜的发展,最后对电池隔膜的未来发展趋势进行展望。  相似文献   

12.
本文首先通过静电纺丝制备了聚丙烯腈/磺化聚醚醚酮(PAN/SPEEK)复合纤维膜。为了减少穿梭效应,在复合纤维膜表面上交替地沉积带相反电荷的氨基化多壁碳纳米管(MWCNTs-NH2)和聚(4-苯乙烯磺酸钠)(PSS),得到了PAN/SPEEK/(MWNTs-NH_2/PSS)n膜。该薄膜具有适宜的孔隙率,良好的电解液浸润性和优异的耐高温特性。长循环测试发现,PAN/SPEEK/(MWNTs-NH_2/PSS)10在0. 1 C时的放电容量为819 mAh/g。100次循环后仍保留了585 mAh/g的放电比容量,容量保持率71. 48%,优于PP隔膜(61. 33%)。因此,本文提供了一种简单的方法改进了锂硫电池的循环稳定性。  相似文献   

13.
聚烯烃隔膜生产成本较低,具有较好的机械强度、化学稳定性,无毒性等优点,但其在热稳定性、电解质浸润性、孔隙率等方面还有待提高,需进行改进以提高隔膜的透气性、孔隙率、孔隙均匀性、耐热性、热收缩性、热关闭性能及离子渗透性等。介绍了聚烯烃隔膜的2种制备工艺,对比分析了干法工艺和湿法工艺的优缺点,综述了聚烯烃隔膜涂覆改性、辐射接枝改性、凝胶填充改性及表面处理改性的改性方法及研究进展,总结了各个改性方法的特点,并对锂离子电池隔膜的发展趋势进行了展望,提出了进一步开发耐高温、电化学稳定及安全性高的隔膜是锂离子电池隔膜未来的研究热点。  相似文献   

14.
世界能源短缺危机日益严重,发展可再生能源成为必然趋势,而储能系统的研究则成为其中的关键。另外,锂离子电池在电子设备中有着重要的作用,但是其较低的理论比容量,使之难以满足大型电子设备的需求。锂硫电池具有数倍于锂离子电池的理论比能量密度(2 600 Wh·kg-1)和理论比容量(1 675 mAh·g-1),而且单质硫储量丰富、价格低廉,因此锂硫电池是非常具有应用前景的储能器件。正极材料对锂硫电池性能具有重要的影响,并得到广泛研究。本文综述了近年来硫/碳、硫@碳/金属化合物、硫/杂原子掺杂碳以及负载催化剂的硫/碳等各类复合材料在锂硫电池中的研究进展,并对其发展进行了展望。  相似文献   

15.
针对现有的锂离子电池隔膜在吸液率、强度和安全性等方面存在的不足,提出了其改性的必要性;综述了锂离子电池隔膜接枝改性、复合改性、共混和填充改性等改性方法,并对各种改性方法进行了分析;指出在改性研究的同时,应开发新的电池隔膜制备方法,如静电纺丝技术等;建议开发新的电池隔膜材料,以提高电池隔膜性能,制备具有特殊性能的锂离子电池隔膜。  相似文献   

16.
于捷  张文龙 《化工进展》2023,(4):1760-1768
锂电池隔膜是锂离子电池的重要组成部分,对整个电池的安全及性能有显著影响。目前国内国产化步伐加快,在锂电池隔膜方面已有明显的成果进步,市场占有率和产能都位居世界前列,但高端隔膜市场却依旧被国外公司垄断,因此,为进一步提高高端化市场的国产化率,仍需加大锂电隔膜的研究力度。本文主要针对电池隔膜在电池中的主要作用、种类、性能差异及优缺点,详细阐述了相应的国内外研究和进展,同时还概括了锂电池隔膜的制备工艺方法等,包括湿法和干法制备工艺。对隔膜的种类以及不同的改性方法进行了概述,包括不同改性方法导致的隔膜性能上的差异,并以几种商业隔膜和纤维素纸基隔膜为例,进行了性能对比。最后对锂电池隔膜在工艺、新型锂电池隔膜发展以及研究方向等方面的未来发展趋势进行了总结展望。  相似文献   

17.
锂二次电池中聚合物电解质及隔膜的研究进展   总被引:2,自引:0,他引:2  
本文对锂二次电池中应用的聚合物电解质和隔膜作了概述。简要介绍了聚合物电解质、隔膜的种类和制备方法及其对电池性能的影响,以及聚合物电解质和隔膜的研究近况和应用前景。  相似文献   

18.
综述了制约锂硫电池循环性能的因素和正极、负极、电解质对锂硫电池循环性能改善的影响。介绍了制约锂硫电池循环性能的主要因素:不可逆硫化锂的形成、硫正极多孔结构的失效和电解液组分与锂负极的副反应。分别介绍了改善锂硫电池循环性能的途径:合适的黏合剂、碳材料、正极制备工艺,锂负极保护技术,合理组分的电解质,电池结构与设计。并在此基础上对今后的发展趋势进行了展望。  相似文献   

19.
随着可持续能源的发展和电子设备及电动汽车对储能设备性能要求的不断提高,高能量密度的锂硫电池体系受到了广泛关注。当前锂硫电池仍然面临单质硫和其放电产物的电子绝缘性、多硫化物的“穿梭效应”和循环过程中体积形貌的变化等科学与技术问题,阻碍其实际应用。针对锂硫电池的上述瓶颈,设计多功能粘合剂有望提升活性材料的利用效率及循环寿命。本文在近年来研究的基础上综述了锂硫电池中粘合剂的研究进展,具有包括面向抑制副反应的粘合剂、面向稳定电极片的多维度粘结的粘合剂和面向低界面电阻的粘合剂,并展望了锂硫电池多功能粘合剂面临的科学挑战和未来发展的机遇。  相似文献   

20.
锂硫电池以其高理论比容量、环境友好和低成本等优点成为理想的下一代高能量密度储能装置。但活性材料的绝缘特性、多硫化物的穿梭效应和硫物种缓慢的动力学转化过程,导致电池性能持续衰减,是目前阻碍锂硫电池商业化发展的关键。利用催化材料加速硫物种转化,研究催化氧化还原动力学,从而实现高性能锂硫电池的开发、认知硫物种微观转化机制,是近年来受到广泛关注的研究热点。本综述从理解多硫化物产生、转化和硫化锂沉积等角度入手,讨论了锂硫化学中的催化转化特点,综述了近年来锂硫电池催化材料的研究进展,评述了催化剂的设计策略与评价方法,可为高活性锂硫电池催化剂材料提供一定的借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号