首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
This study investigated the effects of high pressure processing (HPP) on the barrier properties of eight multilayer films. Pouches made from these films were filled with distilled water, sealed and then pressure processed at 600 and 800 MPa for 5, 10 and 20 min at 45°C. Controls were similarly prepared but exposed to atmospheric pressure. After processing, all pouches were dried and their oxygen, carbon dioxide and water vapour permeance determined. Films used in this study were PET/SiOx /LDPE, PET/Al2O3/LDPE, PET/PVDC/nylon/HDPE/PE, PE/nylon/EVOH/PE, PE/nylon/PE, metallized‐PET/EVA/LLDPE, PP/nylon/PP and PET/PVDC/EVA. Results showed that metallized PET was most severely affected by HPP, as its permeance values for oxygen, carbon dioxide and water increased as much as 150%. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Food products can be high‐pressure processed (HPP) either in bulk or prepackaged in flexible or semi‐rigid packaging materials. In the latter case the packaging material is subjected, together with the food, to high‐pressure treatment. A number of studies have been performed to quantify the effects of high‐pressure processing on the physical and barrier properties of the packaging material, since the integrity of the package during and after processing is of paramount importance to the safety and quality of the food product. This article reviews the results of published research concerning the effect of HPP on packaging materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of high‐pressure processing (HPP) on the total migration into distilled water and olive oil and on the barrier properties of four complex packaging materials were evaluated. The films were polyethylene/ethylene‐vinyl‐alcohol/polyethylene (PE/EVOH/PE), metallized polyester/polyethylene, polyester/polyethylene (PET/PE), and polypropylene‐SiOx (PPSiOx). Pouches made from these films were filled with food simulants, sealed and then processed at a pressure of 400 MPa for 30 min, at 20 or 60°C. Pouches kept at atmospheric pressure were used as controls. Prior to and after treatment, all films were evaluated for their barrier properties (oxygen transmission rate and water vapour transmission rate) and ‘Total’ migration into the two food simulants. In the case of water as the food stimulant, a low ‘Total’ migration was observed and even a lower one after the HPP treatment. In the case of oil as the food simulant, a higher ‘Total’ migration was found compared to the control as a result of damage to the structures during the HPP treatment. The gas permeability of the films increased after the HPP, compared to the control, due to damages in the structure caused during the treatment. The PET/PE film presented minimum changes in properties after HPP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This study investigated the migration of 1,2‐propanediol (PG) through selected food packaging films exposed to high‐pressure processing (HPP). Pouches made from these materials were filled with 95% ethanol as a food‐simulating liquid. These packages were then processed using a pilot‐scale high‐pressure food processor at 400, 600 and 827 MPa and 30, 50 and 75°C for 10 min. Controls were processed at similar temperatures and times, but at atmospheric pressure. To investigate any structural changes to these films during HPP, water was used as the food simulant at temperatures of 30, 75, 85, 90 and 95°C and at pressures of 200, 400, 690 and 827 MPa. No detectable PG migration into the polyester/nylon/aluminium (Al) polypropylene (PP) meal‐ready‐to eat (MRE)‐type pouches was observed. PG migration into the nylon/ethylene vinyl alcohol (EVOH)/PE (EVOH) pouches was similar at 30, 50 and 75°C after 10 min under atmospheric pressure. However, PG migration into the EVOH pouches significantly decreased when treated with high pressure at 30, 50 and 75°C. At 75 and 50°C, the PG migration was significantly higher than the amounts detected at 30°C. Visible signs of delamination between the polypropylene (PP) and aluminum (Al) layers were observed in the MRE pouches processed at ≥200 MPa and 90°C for 10 min. This delamination appeared to occur between the PP and Al layers. The differential scanning calorimetric analyses and Fourier transform infrared (FTIR) spectra were similar for the high‐pressure treated pouches when compared to their respective controls. This indicated that there were no HPP‐induced molecular changes to the treated pouches. Results from this study should be useful to HPP users for predicting PG migration trends and in deciding the selection of appropriate packaging materials for use under similar processing conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The sorption behaviour and flavour‐scalping potential of selected packaging films in contact with food simulant liquids (FSLs) (ethanol and acetic acid solutions) were evaluated after high‐pressure processing (HPP). The films used were monolayer polypropylene (PP), a multilayer (polyethylene/nylon/ethylene vinyl alcohol/polyethylene: PE/nylon/EVOH/PE), film and a metallized (polyethylene terephthalate/ethylene–vinyl acetate/linear low‐density polyethylene: metallized PET/EVA/LLDPE) material. D‐limonene was used as the sorbate and was added to each of the FSLs. After HPP treatment at 800 MPa, 10 min, 60°C, the amount of D‐limonene sorbed by the packaging materials and the amount remaining in the FSL was measured. Untreated controls (1 atm, 60°C and 40°C) were also prepared. Extraction of the D‐limonene from the films was performed using a purge/trap method. D‐limonene was quantified in both the films and the FSL, using gas chromatography (GC). The results showed that D‐limonene concentration, in both the films and the food simulants, was not significantly affected by HPP, except for the metallized PET/EVA/LLDPE. Significant differences in D‐limonene sorption were found in comparison with the control pouches. The results also showed that changes in temperature significantly affected the sorption behaviour of all films. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
超高压杀菌处理对包装材料稳定性的影响   总被引:5,自引:3,他引:2  
在超高压条件下对PET/AL/PE和PET/VMPET 2种塑料薄膜进行处理,测定不同压强及保压时间对材料拉伸强度、断裂伸长率、热封性能及阻隔性能的影响。结果表明:超高压对2种材料拉伸强度及断裂伸长率均未表现出显著影响,但对PET/VMPET/PE材料的热封强度影响显著;在500 MPa压强下保压时间对2种材料的透湿性能影响显著。  相似文献   

7.
A class of random composite materials with statistically inhomogeneous microstructure, for example, functionally graded materials is considered in this paper. The microstructures inside a component are gradually varying in the statistical sense. In view of this particularity, a novel statistical second‐order two‐scale (SSOTS) method is presented to predict the mechanical properties, including stiffness, and elastic limit. To develop this method, the microstructures of statistically homogeneous, and inhomogeneous materials are represented. In addition the SSOTS formulas are derived based on normalized cell depending on the position variables by a constructing way, and the algorithm procedure is described. The mechanical properties of the different inhomogeneous materials are evaluated. The numerical results are compared with the experimental findings. It shows that the SSTOS method is effective. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
李红姬  张万喜  迟剑锋  梁波  陈广义 《功能材料》2006,37(2):295-297,300
详细研究了乙烯-醋酸乙烯酯共聚物(EVA)和纳米氧化钛(nano-TiO2)复合体系的制备工艺对力学性能、分散状态的影响.研究表明,如果把乙烯基三乙氧基硅烷(硅烷偶联剂)作为一个组分,直接与基体EVA及分散相纳米TiO2进行混合,更有利于纳米粒子在基体中的分散.在该复合体系中,纳米TiO2与乙烯基三乙氧基硅烷达到了协同增韧EVA的目的,同时,纳米TiO2具有补强作用,当复合体系的组成为EVA/纳米TiO2=95:5时,对EVA的改性效果最佳.  相似文献   

9.
超高压杀菌处理对食品品质的影响较小,能较好地保持食品原来的营养和风味。阐述了超高压处理的杀菌机理及影响因素,综述了超高压处理对食品包装材料的机械性能、阻隔性能、物质迁移的影响研究状况,展望了超高压处理对食品包装材料影响研究的发展方向。  相似文献   

10.
Orthogonal experiment design together with the analysis of variance was used to examine the processing parameters (laser power, scan speed, layer thickness and hatch spacing) of selective laser melting (SLM) for superior properties of SLM parts, in which nine groups of specimens of Ti‐6Al‐4V were fabricated. The results clarify that the influence sequence of individual parameter on the porosity is laser power > hatch spacing > layer thickness > scan speed. Ultrasonic fatigue tests (20 kHz) were conducted for the SLMed specimens in high‐cycle fatigue (HCF) and very‐high‐cycle fatigue (VHCF) regimes. The SN data show that the fatigue strength is greatly affected by the porosity: the group with the smallest porosity percentage having the highest fatigue strength in HCF and VHCF regimes. Then, the tests on the validation group were performed to verify the optimal combination of SLM processing parameters. Moreover, the observations by scanning electron microscopy revealed that fatigue cracks initiate at lack‐of‐fusion defects in the cases of surface and internal crack initiation.  相似文献   

11.
With the aim of achieving ‘tailor‐made’ chitosan films, the effects of several variables on the properties of chitosan films were studied. These variables were chitosan concentration and molecular weight of thermally depolymerized chitosan, addition of lipids (palmitic acid, beeswax or carnauba wax) and plasticizer (glycerol). The water vapour transmission rate (WVTR) and mechanical properties of these films were measured. The innovative feature of this study is that it provides specific information to support the design of tailor‐made films. These can only be formulated when the effects of the important variables are well understood. It was found that WVTR was reduced by 57% in film made from chitosan that had been thermally treated for 7 h at 100°C (molecular mass 13.7 kDa), while in the emulsion films, the WVTR was increased by incorporation of palmitic acid, beeswax or carnauba wax incorporation. The mechanical properties (tensile strength and elongation at break) were improved when glycerol was used as plasticizer, resulting in more elastic films (increasing the elongation at break by 62%). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
张璐  张大童  曹耿华 《复合材料学报》2019,36(10):2341-2347
通过搅拌摩擦加工(Friction stir processing,FSP)制备了羟基磷灰石增强镁(HA/WE43)复合材料,研究了主轴转速对HA分布的影响及FSP加工前后材料微观组织和力学性能的变化。使用光学显微镜、SEM、TEM对该复合材料的显微组织进行了表征,同时对其显微硬度和室温拉伸性能进行了测试。结果表明:制得的HA/WE43复合材料晶粒尺寸相比于母材发生了显著的细化,加工过程中,HA颗粒的存在增强了FSP的晶粒细化作用;主轴转速较低时,HA/WE43复合材料中的HA团聚较严重,随着主轴转速的增加,HA的分布更加均匀,团聚现象得到改善;尽管局部团聚的HA颗粒会成为复合材料在拉伸变形过程中的裂纹源,但HA/WE43复合材料的极限抗拉强度、屈服强度和伸长率相对于母材仍有明显提高。   相似文献   

13.
The high oxygen barrier properties of whey protein based films and coatings means these materials are of great interest to the food and packaging industry. However, these materials have poor mechanical properties such as the tensile strength, Young's modulus and elongation at break. Up until now, the influence of ultraviolet (UV) radiation on whey protein films has not been reported in the literature. This study thus investigates the influence of UV‐radiation on the properties of whey protein based films. UV‐irradiated films showed increased tensile strength and a yellowing that was dependent on the radiation time. After irradiation, the films showed no significant change in the barrier properties, Young's modulus or elongation at break. In addition, a protein solubility study was undertaken to characterize and quantify changes in structure‐property relationships. The significant decrease in protein solubility in buffer systems which break disulfide and non‐covalent bonds indicates that additional molecular interactions arise with increasing radiation dose. This study provides new data for researchers and material developers to tailor the characteristics of whey protein based films according to their intended application and processing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This study highlights some important aspects of the package, such as packaging materials suitable for high‐pressure treatments, package properties (barriers and flexibility) and package integrity. Six different types of package were tested. They consist of multilayer plastic packages (PA/PE), where thickness, permeability and stress varied at yield point and at breakage. They achieve a good heat seal and good protection from the pressure medium (water) surrounding them. Experiments were carried out at 200, 350 and 500 MPa for 30 min at ambient temperature, comparing the performance of pressurized multilayer plastic packages with untreated packages. Different simulants (water, 3% acetic acid, 15% ethyl alcohol and olive oil), in contact with the packages, were used to demonstrate the good integrity between package and foodstuff during treatment and shelf‐life. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The fatigue results of a high‐pressure die cast of AZ91D magnesium alloy revealed the presence of different types of casting defects, which account for the large scattering in the number of cycles until failure. In this paper, this magnesium alloy has been analysed, and in an effort to reproduce the same surface and material conditions exhibited in automotive service components, the fatigue test samples were manufactured using a die that employs the same casting process and equipment. To examine the fracture surface of all the fatigue tests, a scanning electron microscope was used, and the source of the failure, so as to relate fatigue life with casting defect type, was identified. Five casting defect types that influence the fatigue behaviour were observed and classified: (a) isolated pores (blowholes), (b) micro‐porosity areas, (c) circular shrinkage cavities associated with the contraction and geometry of the casted specimen, (d) surface burrs associated with the die‐casting mould and (e) the presence of oxides or inclusions.  相似文献   

16.
激光冲击处理对Ti6Al4V力学性能的影响   总被引:3,自引:0,他引:3  
通过对钛合金Ti6Al4V的激光冲击处理,研究了激光冲击处理工艺对钛合金Ti6Al4V力学性能的影响.实验表明:激光冲击处理能有效提升Ti6Al4V的力学性能,在激光功率密度由1.15GW/cm2增加到2.31GW/cm2过程中,其冲击波峰值压力线性增加,表面最大残余压应力也相应增大,最高达-264MPa,表面硬化层的显微硬度高达510Hv,硬化层深度约为0.25mm,经过激光冲击处理后硬度相对于原始钛板提高了64%,随着激光能量的增加,冲击区域的抗拉强度极大增强,塑性降低.  相似文献   

17.
Abstract

In this research, high performance concrete (HPC) was designed by the minimum void ratio method, and slag and silica fumes partially replaced cement, as well as fly ash replacing about 15% of sand. Stress curves for compressive, splitting and flexure strengths of HPC specimens were measured and indicated the experimental concretes had better pastes to void ratios than control batches ratio N=Vp /Vv =1.3. The result indicates that pozzolanic materials provide not only a chemical strength effect, but also a physical packing effect. The compressive stress curves may keep growing as the concrete ages.  相似文献   

18.
This study presents the development of novel submicron super absorbent polymers (SAPs) used as admixtures in cement‐based matrices with significant advantages over conventional products. The produced SAPs were characterized in respect of their morphology and composition, while their water absorption capacity was determined in different electrolyte solutions. The hybrid core‐shell spherical structure of the fabricated materials offered significant compatibility enhancement with cement while the workability of the mixture was maintained. The assessment of the cement‐based composites including SAPs revealed that their flexural strength increased by 78%. Self‐healing/sealing behavior was assessed by monitoring the crack sealing via SEM, elemental analysis of the healing products, and determination of the water absorbance coefficient for different times of treatment. The cement/SAPs composites with a concentration of SAPs 2% by weight of cement exhibited self‐healing/sealing responsive capability when an artificial crack was induced. According to the SEM characterization, the crack demonstrated complete healing for the better part of its length after 28 days of treatment.  相似文献   

19.
Si对AM50力学性能和高温蠕变性能的影响   总被引:3,自引:0,他引:3  
在基体合金AM50中分别加入Si和Ca,研究了Si和Ca对AM50-xSi合金的微观组织、力学性能及蠕变性能的影响.结果表明:加入Si后,合金高温蠕变性能随Si量的增加而增加并超过了AS41的水平;在AM50-xSi中加入微量Ca以后,合金中的Mg2Si相得到细化,从汉字状转变成颗粒状,室温及150℃拉伸性能明显提高.  相似文献   

20.
纤维增强树脂复合材料因其轻质和优异力学性能,使其成为了关键深海战略材料,已应用在深海潜水器重大装备。其中,耐压壳是保证深海潜水器安全和稳定的重要部件,与潜水器的质量要求和总体性能密切相关。本文重点关注纤维增强树脂深海圆柱耐压壳,综述其结构设计特性、力学性能试验表征及数值模拟研究进展,并指出目前存在的问题,以期为今后深海复合材料圆柱耐压壳的设计及力学分析提供选材依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号