首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A broad finite element study was carried out to understand the stress fields and stress intensity factors behavior of cracks in adhesively bonded double-lap joints, which are representative of loading in real aerospace structures. The interaction integral method and fundamental relationships in fracture mechanics were used to determine the mixed-mode stress intensity factors and associated strain energy release rates for various cases of interest. The numerical analyses of bonded joints were also studied for various kinds of adhesives and adherends materials, joint configurations, and thickness of adhesive and different crack lengths. The finite element results obtained show that the patch materials of low stiffness, low adhesive moduli and low tapering angles are desirable for a strong double-lap joint. In the double-lap joint, the shearing-mode stress intensity factor is always larger than that of the opening-mode and both shearing and opening mode stress intensity factors increase as the crack length increases, but their amplitudes are not sensitive to adhesive thickness. Results are discussed in terms of their relationship to adhesively bonded joints design and can be used in the development of approaches aimed at using adhesive bonding and extending the lives of adhesively bonded repairs for aerospace structures.  相似文献   

2.
This paper presents the strength of metal-to-metal bonded joints with a flaw in the interface between the adhesive layer and the adhering surface of adherend. The test specimens of butt joints are prepared by bonding two thin-wall metal tubes. The materials are carbon steel, aluminum alloy, brass and copper. The adhesive is epoxy resin. The tensile and shear strength of the joints are experimentally determined by subjecting the specimens to axial load and torsion for various flaw sizes and thickness of adhesive layers. Linear elastic fracture mechanics is applied to the experimental results. The stress intensity factors for a layered composite with a flaw in the interface are numerically calculated in terms of flaw size and loading by using Erdogan's formulas. The fracture stresses of joints with a flaw are predicted at the critical values of the stress intensity factors. The strength of joints without a flaw is also correlated with the stress intensity factors by use of a concept of “effective flaw size”.  相似文献   

3.
Composites have been used extensively in various engineering applications including automotive, aerospace, and building industries. Hybrid composites made from two or more different reinforcements show enhanced mechanical properties required for advanced engineering applications. Several issues in composites were resolved during the last few years through the development of new materials, new methods and models for hybrid joints. Many components in automobile are joined together either by permanent or temporary fastener such as rivets, welding joint and adhesively bonded joints. Increasing use of bonded structures is envisaged for reducing fastener count and riveted joints and there by drastically reducing assembly cost. Adhesive bonding has been applied successfully in many technologies. In this paper, scientific work on adhesively bonded composites and hybrid composites are reviewed and discussed. Several parameters such as surface treatment, joint configuration, material properties, geometric parameters, failure modes, etc. that affect the performance of adhesive bonded joints are discussed. Environmental factors like pre-bond moisture and temperature, method of adhesive application are also cited in detail. A specific case of adhesive joints in hybrid bonded-bolted joints is elaborated. As new applications are expanding in the field of composites joining and adhesive joints, it is imperative to use information on multiple adhesives and their behaviour in different environmental conditions to develop improved adhesive joint structure in mechanical applications.  相似文献   

4.
Structural adhesives are being widely adopted in aerospace and automobile industries. However, in many cases, hostile environments cause non-ignorable degradation in joints mechanical performance. In this work, a combined experimental–numerical approach was developed to characterise the effect of cyclic-temperature environment on adhesively bonded joints. The environmental degradation factor, Deg, was introduced into a cohesive zone model to evaluate the degradation process in the adhesive layer caused by the cyclic-temperature environment and the stress states in adhesive layer before and after temperature exposure treatment were investigated. Carefully designed experimental tests were carried out to validate the simulation results and help the numerical procedure to predict joint mechanical behaviour after environmental exposure. A response surface method was utilised to provide a better visualisation on the relationship between selected factors and response. Finally, the scanning electron microscopy was carried out to investigate the micro fracture mechanisms of adhesively bonded joints.  相似文献   

5.
Structural acrylic adhesives are of special interest because those adhesives are cured at room temperature and can be bonded to oily substrates. To use those adhesives widely for structural bonding, it is necessary to clarify the methodology for predicting strengths of bonding structures with those adhesives. Recently, cohesive zone models (CZMs) have been receiving intensive attentions for simulation of fracture strengths of adhesive joints, especially when bonded with ductile adhesives. The traction-separation laws under mode I and mode II loadings require to estimate fracture toughness of adhesively bonded joints. In this paper, the traction-separation laws of an acrylic adhesive in mode I and mode II were directly obtained from experiments using Arcan type adhesively bonded specimens. The traction-separation laws were determined by simultaneously recording the J-integral and the opening displacements in the directions normal and tangential to the adhesive layer, respectively.  相似文献   

6.
Fracture surfaces of Epon 901/B-3 bonded aluminum alloy joints in the lap-shear configuration were studied using scanning electron microscopy. Major differences in the appearance of the fracture surface from those reported (8) for tensile loaded joints at 23°C are produced either by cyclic loading at 23°C or a change in test temperature to ?196°C. Fracture in tensile loaded joints at ?196°C is a brittle single step process in the opening mode in which rapid crack extension occurs throughout the joint with very little adhesive flow. Tensile fatigue fracture at 23°C is in the opening mode but crack extension is complicated by extensive adhesive flow throughout the entire joint.  相似文献   

7.
Fibre reinforced polymer composites (FRP's) are often used to reduce the weight of a structure. Traditionally the composite parts are bolted together; however, increased weight savings can often be achieved by adhesive bonding or co-curing the parts. The reason that these methods are often not used for structural applications is due to the lack of trusted design methods and concerns about long-term performance. The authors have attempted to address these issues by studying the effects of fatigue loading, test environment and pre-conditioning on bonded composite joints. Previous work centered on the lap-strap joint which was representative of the long-overlap joints common in aerospace structures. However, it was recognised that in some applications short-overlap joints will be used and these joints might behave quite differently. In this work, double-lap joints were tested both quasi-statically and in fatigue across the temperature range experienced by a jet aircraft. Two variants on the double-lap joint sample were used for the testing, one with multidirectional (MD) CFRP adherends and the other with unidirectional (UD) CFRP adherends. Finite element analysis was used to analyse stresses in the joints. It was seen that as temperature increased both the quasi-static strength and fatigue resistance decreased. The MD joints were stronger at low temperatures and the UD joints stronger at high temperatures. It was proposed that this was because at low temperature the strength was determined by the peak stresses in the joints, whereas, at high temperatures, strength is controlled by creep of the joints which is determined by the minimum stresses in the joint. This argument was supported by the stress analysis.  相似文献   

8.
Fibre reinforced polymer composites (FRP's) are often used to reduce the weight of a structure. Traditionally the composite parts are bolted together; however, increased weight savings can often be achieved by adhesive bonding or co-curing the parts. The reason that these methods are often not used for structural applications is due to the lack of trusted design methods and concerns about long-term performance. The authors have attempted to address these issues by studying the effects of fatigue loading, test environment and pre-conditioning on bonded composite joints. Previous work centered on the lap-strap joint which was representative of the long-overlap joints common in aerospace structures. However, it was recognised that in some applications short-overlap joints will be used and these joints might behave quite differently. In this work, double-lap joints were tested both quasi-statically and in fatigue across the temperature range experienced by a jet aircraft. Two variants on the double-lap joint sample were used for the testing, one with multidirectional (MD) CFRP adherends and the other with unidirectional (UD) CFRP adherends. Finite element analysis was used to analyse stresses in the joints. It was seen that as temperature increased both the quasi-static strength and fatigue resistance decreased. The MD joints were stronger at low temperatures and the UD joints stronger at high temperatures. It was proposed that this was because at low temperature the strength was determined by the peak stresses in the joints, whereas, at high temperatures, strength is controlled by creep of the joints which is determined by the minimum stresses in the joint. This argument was supported by the stress analysis.  相似文献   

9.
An experimental–computational fracture-mechanics approach for the analysis and design of structural adhesive joints under static loading is demonstrated by predicting the ultimate fracture load of cracked lap shear and single lap shear aluminum and steel joints bonded using a highly toughened epoxy adhesive. The predictions are then compared with measured values. The effects of spew fillet, adhesive thickness, and surface roughness on the quasi-static strength of the joints are also discussed. This fracture-mechanics approach is extended to characterize the fatigue threshold and crack growth behavior of a toughened epoxy adhesive system for design purposes. The effects of the mode ratio of loading, adhesive thickness, substrate modulus, spew fillet, and surface roughness on the fatigue threshold and crack growth rates are considered. A finite element model is developed to both explain the experimental results and to predict how a change in an adhesive system affects the fatigue performance of the bonded joint.  相似文献   

10.
The concept of stress is very useful to describe the effect of external loads on structures. However, as a basis for the prediction of failure the concept of stress becomes meaningless when the structure encompasses singularities as a result of discrete stiffness steps or geometric anomalies such as cracks. In this article it is argued that the concept of failure stress is incorrect and should be replaced by a generalized concept based on stress intensity factors and singularity orders. It appears that material failure stress is the critical stress intensity factor for a zero-order singularity stress field. By plotting the critical stress intensity factor as a function of singularity order, the strength of a material can be characterized in a general fashion that integrates tensile strength, fracture toughness and critical singularities in adhesive joints. It is also shown that plasticity does not eliminate the stress singularity in an adhesive joint but changes the order of the singularity due to the induced change in interface corner angle between the dissimilar materials in the joint.  相似文献   

11.
While adhesive bonding has been shown to be a beneficial technique to join multi-material automotive bodies-in-white, quantitatively assessing the effect of adherend response on the ultimate strength of adhesively bonded joints is necessary for accurate joint design.In the current study, thin adherend single lap shear testing was carried out using three sheet metals used to replace mild steel when lightweighting automotive structures: hot stamped Usibor® 1500 AS ultra-high strength steel (UHSS), aluminum (AA5182), and magnesium (ZEK 100). Six combinations of single and multi-material samples were bonded with a one-part toughed structural epoxy adhesive and experimentally tested to measure the force, displacement across the bond line, and joint rotation during loading. Finite element models of each test were analyzed using LS-DYNA to quantitatively assess the effects of the mode mixity on ultimate joint failure. The adherends were modeled with shell elements and a cohesive zone model was implemented using bulk material properties for the adhesive to allow full three-dimensional analysis of the test, while still being computationally efficient.The UHSS-UHSS joint strength (27.2 MPa; SD 0.6 MPa) was significantly higher than all other material combinations, with joint strengths between 17.9 MPa (SD 0.9 MPa) and 23.9 MPa (SD 1.4 MPa). The models predicted the test response (average R2 of 0.86) including the bending deformation of the adherends, which led to mixed mode loading of the adhesive. The critical cohesive element in the UHSS-UHSS simulation predicted 85% Mode II loading at failure while the other material combinations predicted between 41% and 53% Mode II loading at failure, explaining the higher failure strength in the UHSS-UHSS joint.This study presents a computational method to predict adhesive joint response and failure in multi-material structures, and highlights the importance of the adherend bending stiffness and on joint rotation and ultimate joint strength.  相似文献   

12.
This paper presents an approach to predicting the strength of joints bonded by structural adhesives using a finite element method. The material properties of a commercial structural adhesive and the strength of single-lap joints and scarf joints of aluminum bonded by this adhesive were experimentally measured to provide input for and comparison with the finite element model. Criteria based on maximum strain and stress were used to characterize the cohesive failure within the adhesive and adherend failure observed in this study. In addition to its simplicity, the approach described in this paper is capable of analyzing the entire deformation and failure process of adhesive joints in which different fracture modes may dominate and both adhesive and adherends may undergo inelastic deformation. It was shown that the finite element predictions of the joint strength generally agreed well with the experimental measurements.  相似文献   

13.
The design of adhesively bonded joints is a quite difficult task, due to the stress singularity that arises at the edges of the adhesive adjacent to the loaded substrate. This stress singularity makes any design approach based on elastic stress analysis inconvenient. A more convenient design tool for an adhesive joint should be based on its mode of failure. Most of the adhesive joints fail at the adhesive/adherend interface or very close to it in the adhesive layer. Therefore, a fracture theory such as linear elastic fracture mechanics (LEFM) can be used to analyse the failure of an adhesive joint. In this paper, the design of a single lap joint using a fracture mechanics parameter, i.e. the strain energy release rate (SERR), is discussed. The SERR is extracted from a finite element model using Irwin's virtual crack closure integral. A design equation relating the lap length to the adherend thickness through some design parameters is derived.  相似文献   

14.
复合材料具有比强度高、耐疲劳性能好、减震性能好、性能可设计等诸多优点,在航空航天、汽车等工业领域得到了广泛应用。本文通过改变复合材料管的铺层和胶接结构形式考察某航天复合材料管与接头连接构件的抗弯强度和疲劳性能。结果表明,采用双搭结构或单搭结构胶接段管的外侧局部加强都可以显著提高复合材料管与接头胶接构件的抗弯性能及疲劳性能,这两种方法都能够满足该航天构件的设计要求。  相似文献   

15.
Viscous flow that often occurs in adhesive materials leads to a permanent deformation when adhesives are subjected to creep loading. Creep loading has a significant influence on the strength of bonded structures. Due to the viscous behavior, the fracture energy also may change with time for joints that experience creep loading in service. In this work the effects of two creep parameters (creep load and time) on the residual mode II fracture energy of an adhesive was investigated using end notched flexure (ENF) specimens. To achieve this, ENF samples were subjected to different creep loading levels at different creep times followed by quasi static tests to obtain the residual shear fracture energy of the adhesive. Experimental results showed that pre-creep loading of the bonded structures can significantly improve the fracture energy and the static strength of the joints.  相似文献   

16.
This paper deals with the application of fracture mechanics approaches for predicting the residual static strength and the crack kinking angle of adhesively bonded joints containing interfacial edge pre-cracks. The interfacial cracks are created due to different factors such as inappropriate surface preparation which cause a significant reduction of the joint strength. To investigate the residual strength of interfacial cracked adhesive joints and predict the crack kinking angle, three different approaches including the maximum tangential stress (MTS), the minimum strain energy density (SED) and the maximum tangential strain energy density (MTSED) were assessed. To this end, single lap joints (SLJs) containing a brittle adhesive material and with different pre-crack sizes and various substrate thicknesses were manufactured and tested. The results were also verified by applying fracture mechanics approaches on previously published experimental data. According to the results, it was concluded that in mode II dominant cases, the predictions of kinking angle using the MTS method was in good agreement with the experimental observations, while in mode I dominant cases the mentioned approach provided poor predictions. It was also found that the SED criterion could be a precise model for predicting the crack extension angle in mode I dominant conditions. The results also showed that the MTS criterion predicts the residual static strength of interfacial cracked adhesive joints very well.  相似文献   

17.
An investigation into the durability of adhesively bonded joints has been undertaken to help improve the prediction of joint lifetimes. Polymethylmethacrylate (PMMA) substrates have been bonded with a two-part acrylic adhesive to make single lap-shear joints. Joints have been aged in a hot/wet environment (40°C and 95% humidity) with no applied stress for up to 4000 h and were tested in tension. The novel aspect of the research has been the development of a video imaging analysis technique which allows damage initiation and propagation within the joint to be detected as load is applied to the joint. Images of fracture initiation and damage propagation have been correlated with stress/displacement data for joints under tensile loading. The data from aged samples is compared with data from un-aged samples. Both the stresses at which damage is seen to initiate and the final failure stress of the joints decrease as the ageing time increases. The failure mode changes from cohesive failure within the PMMA substrate to failure within the adhesive, near the PMMA/acrylic adhesive interface.  相似文献   

18.
Adhesively bonded structural joints have increasingly found applications in automotive primary structures, joining dissimilar lighter-weight materials. Low-modulus rubbery adhesives are attracting rising interest as an alternative to conventional rigid structural adhesives due to benefits such as the excellent impact resistance they provide. This paper is the first of two parts that investigate, both experimentally and numerically, the mechanical behaviour of a rubbery adhesive and the bonded joints to be used in a lightweight automobile structure. This part 1 paper characterises the fracture behaviour of the flexible adhesive layer with thick bondlines and presents a way to reliably determine the fracture mechanics parameters under a range of loading modes. Assessment of the various fracture tests indicated that DCB and SLB should provide mode I and mixed mode fracture energies but that the conventional ENF for mode II would not be practical for such compliant adhesive layers. Instead a cracked thick adherend shear specimen was developed and used. Reliable fracture energies were obtained from these specimens and a mixed mode fracture criterion developed for application in the part 2 paper.  相似文献   

19.
This paper presents some of the important results obtained from a series of studies on cohesive fracture in adhesively bonded joints. Due to the complex nature of the adhesive joint fracture, an accurate and efficient numerical method particularly suitable for the present problem has been developed, based on a hybrid-stress finite element formulation. Fracture characteristics in adhesively bonded joints are described in terms of local crack-tip deformation and stress fields in the polymeric adhesive layer. Effects of material properties, joint geometry, and bond-line thickness on the crack behavior are studied for classical lap-shear and currently used double-cantilever-beam joints. Of particular interest are the crack-tip stress intensities in the adhesive layer; their values are obtained for several cases of practical importance.  相似文献   

20.
Due to their many advantages, adhesively bonded joints are widely used to join components in composite structures. However, premature failure due to debonding and peeling of the joint is the major concern for this technique. Existing analytical models suffer from two major drawbacks: 1) not satisfying zero-shear stress boundary conditions at the adhesive layer’s free edges[1] and 2) failure to distinguish the peel stress along two adherend/adhesive interfaces[2]. In this study, we develop a novel three parameter elastic foundation (3PEF) model to analyze a representative adhesively bonded joint, the symmetric double-lap joint, which is believed to have relatively low peel stresses. Explicit closed-form expressions of shear and peel stresses along two adhesive/adherend interfaces are yielded. This new model overcomes the existing model’s major drawbacks by satisfying all boundary conditions and predicting various peeling stresses along two adherend/adhesive interfaces. It not only reaches excellent agreement with existing solutions and numerical results based on finite element analysis but also correctly predicts the failure mode of an experimentally tested double-lap joint. This new model therefore reveals the peel stresses’ significant role in the failure of the double-lap joint, but the classical 2PEF model cannot create it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号