首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
俞寅辉  乔敏  高南箫 《粘接》2014,(4):48-50,47
将γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)与环氧树脂(EP)预反应,采用黏度计、万能电子材料试验机、红外光谱、差示扫描量热仪,考查了KH560含量对EP/改性聚酰胺室温固化环氧结构胶性能的影响。结果表明,KH560含量从0增加至9质量份(每100份EP中加入量)时,胶体拉伸强度从51 MPa降低至36.5 MPa;压缩强度从79.7 MPa降低至53 MPa;粘接强度从8.7 MPa增至11.7 MPa。同时,固化物的热稳定性也有一定程度提高,未改性及9份KH560改性的EP固化物50%热失重的温度分别为382.1℃与403.6℃。  相似文献   

2.
Bio-based epoxy resin is a promising candidate for petroleum-based resins due to its abundant reserves and low-cost products, which mainly use polyphenolic composites as precursors. Liquefied banana pseudo stem (LBPS), a highly active compound obtained by liquefaction with 7.5% of sulfuric acid as catalyst at 160°C, was used to synthesize bio-based epoxy resin. FTIR and SEM demonstrated the synthetic process of LBPS-based epoxy resin (LBPSER) from waste banana pseudo stem (BPS). Mechanical test, reagent resistance, dynamic mechanical analysis, and thermogravimetric analysis were utilized to evaluate the mechanical and chemical properties of LBPSER. With polyamide (PA) as hardener, LBPSER-PA adhesive exhibited an optimum shear strength that is comparable with that of commercial diglycidyl ether of bisphenol A (DGEBA), corresponding to 11.86 vs 11.89 MPa. Interestingly, the shear strength of this adhesive curing at 40°C could get 9.52 MPa for wood materials. The adhesive also performed excellent resistance to organic agents, adverse acidic, and alkaline environments. Notably, as the content of LBPSER in adhesive increased, an increase of glass transition temperature could be verified from 42 to 100°C. The LBPSER-PA adhesive presented good thermal and physicochemical performances, thereby suggesting the potential of utilizing liquefied product from BPS as alternative to toxic bisphenol A in synthesizing bio-based epoxy resin. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47135.  相似文献   

3.
Accelerating the curing of epoxy/aromatic amine adhesives and improving their toughness are challenges in heat-resistant epoxy structural adhesives. Herein, we report an epoxy/aromatic amine adhesive accelerated curing system with an oxo-centered trinuclear (chromium III) complex, which is toughened using a thermoplastic block copolymer (TPBC). The reaction characteristics, heat resistance, microstructure, and bonding properties of the accelerated epoxy adhesives were analyzed. The reaction peak temperature of the epoxy with 3% catalyst was 113.1°C, which was 113.6°C lower than that of epoxy without catalyst, and the modified epoxy resin demonstrated a potential for rapid curing at medium temperature. The glass transition temperature of the TPBC-toughened epoxy adhesive was 125°C after curing, indicating excellent thermal stability after medium temperature curing. The introduction of the TPBC increased the single-lap shear strength of the epoxy adhesive without reducing its heat resistance. The shear strength at room temperature and 120°C of the modified epoxy adhesive with 50 phr of TPBC was 25.2 and 10.9 MPa, respectively. Moreover, the epoxy film adhesive exhibited outstanding bonding properties when used in the bonding of lightweight honeycomb sandwich structures.  相似文献   

4.
Large laminated timber (LT) made of hardwood is widely used as the main constitutional element of goods such as furniture, pianos and doors. A high durability of LT is essential to these products. This study focused on finding as to what adhesives were acceptable as highly durable adhesives for LT. Twelve different adhesives such as resorcinol-formaldehyde resin, aqueous emulsion-type isocyanate resin, poly(vinyl acetate) emulsion, epoxy resin, etc. were used. The durability of LT, i.e., the percentage of delamination length of LT under tests such as humidity and temperature cycling tests, and outdoor tests, was discussed in relation to the adhesive shear strength of a lap joint (LJ). The results showed that the percentage of delamination length under both low ?20°C for 16 h and high-temperature 50°C for 8 h cycling tests (temperature-resistance) on LT indicated a strong trend with the adhesive shear strength of the LJ exposed to dry air at 100°C for 24 h. In addition, the percentage of delamination length under outdoor exposure test for three months (outdoor-resistance) of the LT showed a trend with the adhesive shear strength of the LJ exposed to dry air at 100°C for 24 h, as well as with the adhesive shear strength of the LJ immersed in water at 60°C for 3 h. These trends pointed out that the thermal stability of the adhesive from ?20°C for 16 h up to 50°C for 8 h was an important parameter in order to improve adhesive durability for the LT.  相似文献   

5.
High-performance room temperature-cure epoxy structural adhesives utilizing simplified formulation are developed. The developed structural adhesive consists of diglycidyl ether of bisphenol A (DGEBA) and novolac epoxy blend as a base resin, micrometer-sized silica particles as a reinforcing filler, and triethylenetetramine as a curing agent. The developed ambient temperature-cure epoxy structural adhesive with optimized formulation exhibits outstanding properties including high glass transition temperature of 95°C, high thermal stability with degradation temperature at 5% weight loss of 364°C, exceptionally high rubbery plateau modulus of 320 MPa, good flame-retardant characteristics with limiting oxygen index of 40, and high single lap shear strength for single lap steel-steel bonded joint of 548 MPa at the temperature of 80°C. The silica-filled DGEBA/novolac epoxy composite adhesive is a potential candidate for applying as a structural adhesive for construction with long-term durability.  相似文献   

6.
采用端羧基液体丁腈橡胶(CTBN)增韧环氧树脂,制备了双组分室温固化环氧结构胶。利用傅里叶变换红外光谱仪(FTIR)、微机控制万能材料试验机及扫描电镜(SEM)对固化过程、固化产物剪切强度及固化产物微观形态进行了表征。该胶树脂甲组分的最佳制备条件如下:环氧树脂与CTBN的质量比8∶1,反应温度200℃,保温时间2.5 h。该胶在室温下固化24 h,室温剪切强度可达29.24 MPa,耐介质性能良好,CTBN改性环氧树脂增韧效果显著。  相似文献   

7.
This article describes the evaluation of the durability of joints composed of wood adherends with a bonded layer of fibre-reinforced polymer (FRP) fabric. Carbon and glass fibres in an epoxy matrix were studied. The main purpose of FRP usage with timber in the construction industry is generally to improve the stiffness/strength of reinforced members without any influence on their service-life or any environmental impact. From the perspective of the timber reinforcement process, optimal dimensional stability during moisture changes in wood should be one of the most important criteria for such joints. Therefore, FRP/wood joints were evaluated with regard to the influence of real external environmental conditions on the bondline over a period of 40?months. During exposure to these conditions, specimen failures and defects were continuously visually evaluated. The decisive factor in this evaluation was bond integrity, verified by the tensile shear strength of the FRP/wood joint. After the experimental study, it was noted that the first 20?months have a significant effect on bondline failure occurrences, which involve decreases in tensile shear strength. In the next 20?months, the FRP/wood bondlines resist other severe hygrothermal stresses without significant strength decreases. An additional observed parameter was the percentage of wood failure in the bonded area of single lap joints, which characterises the mode of failure of the bonded joint. To determine the influence of ageing on adhesive due to ultraviolet radiation and varying temperature, infrared absorption spectroscopy analysis was performed to reveal changes in the macromolecular structure of the epoxy adhesive. Findings showed that UV radiation had a significant influence on the degradation of the adhesive structure.  相似文献   

8.
采用羟基磷灰石(HA)对环氧树脂结构胶进行改性。对改性后结构胶的力学性能进行测试。实验表明:随着HA的掺量增加,环氧结构胶的压缩强度、冲击强度、粘钢剪切强度提高、拉伸强度略有降低;当羟基磷灰石的掺量为5%时。环氧树脂结构胶的压缩强度、冲击强度分别为92MPa、6.8kJ/m2,比纯环氧树脂基体提高28%和70%;当羟基磷灰石的掺量为7%时,环氧树脂结构胶的粘钢剪切强度为26.4MPa.比纯环氧树脂基体提高55%,羟基磷灰石对环氧树脂有较好的增强增韧作用。  相似文献   

9.
The aim of this research is to study the influence of moisture absorption at low moisture contents on the creep behaviour of an epoxy adhesive in steel bonded joints. Single lap joints were manufactured using high strength steel adherends and a two-component epoxy adhesive. The single lap joints were tested at load levels corresponding to average lap shear stresses of ± 5%, 15%, 30% and 45% of the dry lap shear strength in both 40 °C air and 40 °C distilled water. Specimens were not pre-aged to be able to analyse the coupled effect of moisture and loading. The test results show that an increase in the load level resulted in an increase in the instantaneous strain and in the creep strain rate. The creep strain of single lap joints loaded in water was generally larger than for the ones loaded in air. For joints loaded in water the creep behaviour was found to be dependent on the moisture concentration in the adhesive. At low moisture percentages creep was suppressed, resulting in a lower instantaneous strain. At higher moisture percentages creep was promoted, resulting in a larger strain rate. The suppression of creep at low moisture percentages is attributed to water molecules bonding to the epoxy macromolecules, resulting in a reduction in molecular mobility and a smaller creep strain. At higher moisture percentages the plasticizing effect of the water dominates, resulting in a larger creep strain. The Maxwell three-element solid model and Kelvin-Voigt three-element solid model were used to simulate the creep behaviour of the single lap joints loaded in air and water. The models gave good representations of the creep response across the different load levels in both water and air, they were however unable to give a correct representation of the instantaneous strain of the single lap joints loaded in water. This is attributed to the models being unable to account for the present short-term relaxation process that is dependent on the moisture concentration.  相似文献   

10.
Internal stress analysis is essential to structural design of materials applied in cryogenic engineering. In this contribution, thermomechanical properties including dynamic thermomechanical properties and thermal expansion behavior of four epoxy resins, namely the polyurethane modified epoxy resin (PUE), diglycidyl ether of bisphenol A (DGEBA), tetraglycidyl-4,4′-diaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol (TGPAP) were studied by dynamic thermomechanical analysis. Internal stress of the epoxy layer in the bonded joint was calculated based on the thermomechanical properties. Meanwhile, the structure-cryogenic property relationship of epoxy resins were investigated. Results demonstrate that internal stress in the four epoxies bonded joints is 6 ~ 21 MPa at −150°C, and is positively correlated with the average thermal expansion coefficient (CTE) of epoxy resins. TGDDM and TGPAP showed higher retention of lap shear strength both at −196°C and after temperature cycling due to their lower CTE. Morphology of the fractured surface of bonded joints demonstrated that internal stress is responsible for the severe interface failure at −196°C. It reveals that selection of epoxy resins with low CTE is beneficial for designing high-performance epoxy adhesive systems served at cryogenic temperature.  相似文献   

11.
A polyurethane adhesive system was prepared by reacting a resin consisting of palm kernel oil‐based polyester and dimethyl cyclohexanediamine with an aliphatic adduct based on 2,4‐diphenylmethane diisocyanate (MDI). Brushing technique was used for applying the adhesive (of thickness 0.05–0.10 mm) onto the wood substrate. Shear strength test for substrates that have been exposed to moisture and various degrees of heat was carried out. Collected data indicated that the adhesive exposed to heat at 70°C has the highest shear strength. At this point, the shear force was at the maximum of 2562 N with strength of 2.65 MPa. However, at higher testing temperature, there is a decrease in the shear force and strength of the adhesive. The presence of moisture, however, does not affect much on the shear strength. The morphological observations via optical microscope were made to explain the relationship of heat and moisture with the shear strength of the adhesive. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1759–1764, 2006  相似文献   

12.
Dielectric and thermomechanical analysis, infrared spectroscopy, and mechanical testing were used to study the changes which occur in the cure behavior of a 178°C (350°F) epoxy film adhesive, Hysol EA-9649. The response of the system was compatible with the catalyst type employed. The overall effect of increasing moisture content was an increase in flow accompanied by lower Tg values in the cured film with no loss in ambient temperature tensile lap shear strength. These effects are interpreted in terms of the dicyandiamide portion of the adhesive catalyst system reacting with the absorbed moisture resulting in a cured adhesive of different structure but equivalent in bonded joint strength to those made with low moisture content adhesive.  相似文献   

13.
Epoxy–imide resins were obtained by curing Araldite GY 250 (diglycidyl ether of bisphenol‐A and epichlorohydrin; difunctional) and Araldite EPN 1138 (Novolac–epoxy resin; polyfunctional) with N‐(4‐ and 3‐carboxyphenyl)trimellitimides derived from 4‐ and 3‐aminobenzoic acids and trimellitic anhydride. The adhesive lap shear strength of epoxy–imide systems at room temperature and at 100, 125, and 150°C was determined on stainless‐steel substrates. Araldite GY 250‐based systems give a room‐temperature adhesive lap shear strength of about 23 MPa and 49–56% of the room‐temperature adhesive strength is retained at 150°C. Araldite EPN 1138‐based systems give a room‐temperature adhesive lap shear strength of 16–19 MPa and 100% retention of room‐temperature adhesive strength is observed at 150°C. Glass transition temperatures of the Araldite GY 250‐based systems are in the range of 132–139°C and those of the Araldite EPN 1138‐based systems are in the range of 158–170°C. All these systems are thermally stable up to 360°C. The char residues of Araldite GY 250‐ and Araldite EPN 1138‐based systems are in the range of 22–26% and 41–42% at 900°C, respectively. Araldite EPN 1138‐based systems show a higher retention of adhesive strength at 150°C and have higher thermal stability and Tg when compared to Araldite GY 250‐based systems. This has been attributed to the high crosslinking possible with Araldite EPN 1138‐based systems arising due to the polyfunctional nature of Araldite EPN 1138. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1729–1736, 2000  相似文献   

14.
This study investigated the shear bond strength of a bis-acryl composite repaired with a flowable composite after different surface treatments. Sixty standardized cylindrical silicone molds were filled with bis-acryl resin provisional material and then divided into six groups (n = 10 per group) to undergo different surface treatments. After a surface treatment had been performed, the flowable composite was injected directly into the cylinder of each specimen, and the specimens were then cured over a 10-mm-thick glass slide for 20 s. The shear bond strength was determined using a universal testing machine at a crosshead speed of 1.0 mm/min by placing a knife-edged blade immediately adjacent and parallel to the adhesive interface between the repair material (flowable composite) and the bis-acryl resin provisional material. The mean shear bond strengths ranged from 8.98 to 17.14 MPa. The highest mean shear bond strength corresponded to the bonding group (17.14 MPa), whereas the air-particle abrasion group exhibited the lowest mean shear bond strength (8.98 MPa). Surface treatment of bis-acryl resins with bonding appears to be a promising approach for improving repair bond strength, and the bonding group exhibited the highest levels of bond strength.  相似文献   

15.
The aim of this research is to investigate the effect of moisture on the static response of adhesively bonded monolithic single lap joints and laminated doublers loaded in bending. All joints were made of aluminium alloy Al 2024-T3 bonded using epoxy film adhesive FM 73M OST. The joints were aged in deionised water at a temperature of 50 °C for up to 2 years exposure. The use of different widths of specimen (5 mm for monolithic single lap joints and 15 mm for laminated doublers) allowed both full and partial saturation of the adhesive layer. The bulk adhesive has been characterised to obtain the coefficient of moisture diffusion, the coefficient of thermal and moisture expansion and the moisture dependent mechanical properties. The testing results showed that the mechanical properties degraded in a linear way with the moisture content. The residual strength after exposure decreased with increasing moisture content (exposure time) and tended to level off towards saturation. The damage evolution and failure of the joint has been successfully monitored using the backface strain technique and in-situ video microscopy. Progressive damage finite element modelling using a moisture dependent, bilinear traction-separation law has been undertaken to predict the residual strength. Residual stresses due to thermal and swelling strains in the adhesive layer have been included; however their effect on the predicted static strength was not significant. Good agreement was found between the predicted residual strength and the experimental result.  相似文献   

16.
Aliphatic amines were used as decomposer to decompose waste rigid polyurethane and polyisocyanurate foams, and the obtained decomposed products were directly used as curing agent of epoxy resin. Effects of the decomposing condition including amine type, foam–decomposer ratio, and reaction temperature on the decomposition reaction and properties of the decomposed products were investigated. Using amines with low molecular weight could enhance decomposition reaction rate and total amine number and lessen viscosity of the obtained decomposed products. Viscosity of the decomposed products decreased with increase of reaction temperature, but increased with increment of foam–decomposer ratio. Shear strength of adhesives consisting of decomposed products and epoxy resin was measured, and their thermal properties were analyzed. The adhesives could be cured completely over 60°C and their shear strength enhances with adding coupling agent in the adhesive system. The adhesives have good thermal stability and show satisfactory shear strength with more than 15, 15, 7, and 3 MPa at 25, 60, 100, and 150°C, respectively. The results demonstrate that the obtained adhesive systems can be used as structural adhesive. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Structural adhesives are finding increasing use in many applications. However, their utilization at elevated temperature has always been a challenge due to their low thermal and mechanical properties. However, in recent years, the development of high performance polymers have overcome the problem of using adhesive bonding at high temperature to some extent. Polybenizimidazole (PBI) is one such recently emerged high performance polymer with excellent thermal and mechanical properties. It has a tensile strength of 160 MPa and a glass transition temperature (Tg) of 425 °C. Due to its excellent thermal and mechanical properties, it has the potential to be used as an adhesive under various environmental conditions. In the present work, efforts are devoted to explore the potential of using PBI at high temperature and in hot-wet environmental conditions. M21 and DT120 epoxy based carbon fiber composite bonded joints were prepared and tested. Both M21/carbon composite and DT120/carbon composite have exhibited a reduction in joint strength of about 16% and 25% respectively after 1000 h of conditioning in a hot-wet environment. However, a reduction in lap shear strength of 52% and 56% is observed when composite bonded joints were tested at 80 °C.  相似文献   

18.
Ageing of adhesive-bonded aluminium–diglycidyl ether of bisphenol A based aliphatic amine–cured acrylic modified epoxy resin reinforced with fused silica exposed to 100% humidity and cycled between 42–48–42 °C every hour is reported. Moisture uptake was followed using broadband dielectric measurements. It was found that the adhesive absorbs moisture very rapidly, the adhesive undergoes significant swelling, and there is a consequent reduction in strength consistent with plasticization of the matrix. The dielectric measurements parallel closely the changes occurring in the adhesive bond line and provide a nondestructive method for monitoring the changes in bond strength. The changes that occur are dominated by the effects of moisture on the adhesive, various pretreatments have little effect on the ageing process, and interfacial failure in this case does not make a significant contribution to the failure of these joints.  相似文献   

19.
In this study the impact and quasi-static mechanical behaviour of single lap joints (SLJ) using a new crash resistant epoxy adhesive has been characterized as a function of temperature. Single lap adhesive joints were tested using a drop weight impact machine (impact tests) and using a universal test machine. Induction heating and nitrogen gas cooling was used in order to achieve a homogeneous distribution of temperature along the overlap of + 80 °C and ?20 °C, respectively. Adherends made of mild steel, similar to the steel used in automobile construction, were chosen in order to study the yielding effect on the strength of the SLJ. Results showed that at room temperature (RT) and low temperature (LT), failure was dictated by the adherends due to the high strength of the adhesive. At high temperature (HT), a decrease was found in the maximum load and energy absorbed by the joint due to the reduced strength of the adhesive at this temperature. The results were successfully modelled using the commercially available finite element software Abaqus®. Good correlation was found between experimental and numerical results, which allows the reduction of experimental testing.  相似文献   

20.
The aim of this study is to determine the effect of cataphoretic and powder coatings and also the method of application the primer on the adherends surface on the strength and failure modes of EN AW-5754 aluminium alloy adhesive joints. The study is performed on lap joints made of EN AW-5754 aluminium alloy, subjected to three different types of surface treatment; namely a) polyurethane cataphoretic coating, b) powder coating based on black mat RAL 9005 UL polyester resin and c) no coating. The tested adhesive joints were made using a one-component polyurethane adhesive Terostat 8596, which was dedicated for automotive and cured under a constant load of 0.018 MPa at 20 ± 2 °C. In addition, this study investigates the effect of the application of Terostat 8519P adhesion promoter which is a liquid polyurethane-based primer containing solvents and which is corresponding to Terostat 8596 polyurethane adhesive. Terostat 8519P adhesion promoter was applied in two different ways: a) to one substrate and b) to both substrates. The produced adhesive joints were subjected to strength tests using the Zwick/Roell Z150 testing machine. The examination of fracture in the tested adhesive joints was performed in accordance with the EN ISO 10365 standard. The shear strength results have demonstrated that both the method of application of the adhesion promoter (Terostat 8519 P) and the presence of cataphoretic coating had an influence on adhesive joints strength. The use of the adhesion promoter significantly affects the strength of both uncoated EN AW-5754 aluminium alloy adhesive joints and the adhesive joints subjected to powder coating. The use of the adhesion promoter has a less significant effect on the cataphoretic-coated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号