首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the bimodal WC-Co coatings were sprayed by high-velocity oxygen-fuel (HVOF), and the conventional WC-Co coatings were also fabricated for comparison. The microstructure, mechanical properties and high temperature wear performance were investigated. The bimodal WC-Co coating presented denser structure (porosity lower than 1.0%), higher average hardness (1164 HV0.1) and fracture toughness (11.5 ± 1.4 MPa·m1/2) than that of conventional coating. The Weibull analysis of microhardness data of the bimodal coating presents a mono-modal distribution. The friction coefficient and wear rate of the bimodal coating were 0.61 and 2.96 × 10 6 mm3·N 1·m 1, respectively, which is lower than that of conventional coating at the test temperature of 450 °C. The tribofilm could be formed on the worn surface of bimodal WC-Co coating, which is composed of WO3 and CoWO4. The formation of tribofilm could reduce friction and wear.  相似文献   

2.
A comprehensive study of the phase composition, microstructure evolution, microhardness and wear performance of WC-12Co composite coatings fabricated by laser cladding using coaxial powder-feed mode was presented. It was shown that a combination of high scan speed and high laser energy density made WC on the edge of WC-12Co composite powders partially melt in liquid Co and 304 stainless steel matrix, and then new carbides consisting of lamellar WC and herringbone M3W3C (M=Fe, Co) were formed. Meanwhile, WC-12Co composite coatings with no porosity, cracks and drawbacks like decarburization were obtained, showing high densification and good metallurgical bonding with the substrate. Furthermore, a considerably high microhardness of HV0.3 1500-1600, low coefficient of friction of 0.55 and wear rate of (2.15±0.31)×10-7 mm3/(N·m) were achieved owing to the synergistic effect of excellent metallurgical bonding and fine microstructures of composite coating under laser power of 1500 W.  相似文献   

3.
FeCoCrNi HEA coatings with 20% mass fraction of WC reinforcing particles were prepared by two different cladding methods, laser cladding (LC) and plasma cladding (PC). The microstructure of HEA matrix and WC particles of LC and PC coatings were discussed respectively. For HEA matrix, dendritic morphology was observed in both coatings. For WC particles, a few granular (Cr,W)2C carbides around WC particles in LC coatings, and a large number of crystal and fishbone Fe3W3C carbides around WC particles in PC coatings. Mechanical properties as hardness and wear resistance of the two kinds of coatings were also investigated. The interstitial solution strengthening effect of C element is stronger in PC coating, and the hardness of HEA matrix in LC coatings is twice that of in PC coating, which shows a strong retention force on WC particles. The friction coefficient of LC coating is lower and stable, with the volume wear rate of 0.7 × 10−5 mm−3/N·m, showing high wear resistance. PC coatings have poor wear resistance due to decarbonization and oxidation of WC particles and reduction of retention force of HEA matrix, with the volume wear rate of 8.29 × 10−5 mm−3/N·m. The wear mechanism of both coatings were also discussed.  相似文献   

4.
Li  Xiao-cong  Liang  Hui  Zhao  Yan-zhou  Gao  Li  Jiang  Li  Cao  Zhi-qiang 《中国铸造》2022,19(6):473-480

In recent years, the coating prepared by laser cladding has attracted much attention in the field of wear research. In this work, AlCrFeNiMo0.5Six (x=0, 0.5, 1.0, 1.5, 2.0) high-entropy alloy coatings were designed and prepared on Q235 steel by laser cladding. The effect of Si content on microstructure, microhardness and wear resistance of the coatings was studied in detail. The results indicate that the AlCrFeNiMo0.5Six high-entropy alloy coatings show an excellent bonding between substrate and the cladding layer. The AlCrFeNiMo0.5Six coatings are composed of nano-precipitated phase with BCC structure and matrix with ordered B2 structure. With the addition of Si, the white phase (Cr, Mo)3Si with cubic structure appears in the interdendritic, and the morphology of the coating (x=2.0) transforms into lamellar eutectic-like structures. The addition of Si enhances the microhardness and significantly improves the wear resistance of the coatings. As x increases from 0 to 2.0, the average hardness of the cladding zone increases from 632 HV to 835 HV, and the wear rate decreases from 1.64×10−5 mm3·(N·m)−1 to 5.13×10−6 mm3·(N·m)−1. When x≥1.5, the decreasing trend of the wear rate gradually slows down. The wear rates of Si1.5 and Si2.0 coatings are 5.85×10−6 mm3·(N·m)−1 and 5.13×10−6 mm3·(N·m)−1, respectively, which is an order of magnitude lower than that of Q235 steel.

  相似文献   

5.
超音速火焰喷涂(HVOF)制备的WC基金属陶瓷涂层广泛应用于金属构件的磨损、腐蚀及空蚀防护。分别采用氢气燃料及煤油液体燃料HVOF喷涂设备分别在9种不同的工艺条件下制备了WC10Co4Cr涂层,研究了燃料类型对涂层的组织、残余应力及力学性能的影响规律。在两种燃料HVOF工艺各自优化的喷涂参数条件下,通过对基体曲率的原位监测对比测试了涂层中的平均残余应力;利用显微维氏硬度、压痕法(断裂韧性)和球盘摩擦磨损对比研究了涂层的力学性能。结果表明:液体燃料(LF)HVOF焰流中粒子的温度更低,速度更高。LF-HVOF喷涂的WC10Co4Cr涂层内的残余压应力更高且涂层致密度更高,而气体燃料(GF)HVOF喷涂的WC10Co4Cr涂层内为残余拉应力。LF-HVOF涂层(1280 HV0.3, 7.3 MPa·m0.5)比GF-HVOF涂层(1032 HV0.3, 4.5 MPa·m0.5)具有更高的硬度和断裂韧性,LF-HVOF涂层的耐磨性约为GF-HVOF涂层的1.7倍。  相似文献   

6.
运用等离子喷涂技术制备了TiC颗粒增强镍基合金复合涂层,分析了TiC颗粒增强镍基合金复合涂层的微观结构,研究了其摩擦磨损行为与机理。结果表明:TiC颗粒增强镍基合金复合涂层主要由γ-Ni,CrB,Cr7C3和TiC构成;复合涂层与基底材料间形成了厚度为9.4μm的过渡层,达到了冶金结合。当TiC颗粒含量为30%(体积分数)时,复合涂层的摩擦系数和磨损率均最低,即其摩擦系数为0.33,较纯镍基合金涂层降低了30%;其磨损率为0.3×10-3mm3/m,是纯镍基合金涂层的1/3。当载荷在6~10N的范围内时,复合涂层呈轻微磨损,其磨损机理主要为粘着磨损;当载荷达到12N时,复合涂层产生严重磨损,其磨损机制转变为硬质相的脱落和转移层的层脱剥落。  相似文献   

7.
金属陶瓷涂层与类金刚石涂层的性能不同,在实际应用中两种涂层不能够互换使用,对于涂层的应用来说是一个缺陷。为了克服上述缺陷,将金属陶瓷涂层与类金刚石涂层的优异性能相结合,提出一种金属陶瓷复合自润滑碳涂层,并以三元TiCN涂层为对象,采用SEM、EDAX、XRD、Raman、XPS及维氏硬度计、压痕试验、摩擦磨损试验,研究具有自润滑特性的碳相对含量对涂层微观组织结构、力学及摩擦磨损性能的影响。结果表明:随着碳含量的增加,涂层表面更为致密光滑,涂层的主要组成相为TiN、TiC、TiC_(0.3)N_(0.7)及TiC_(0.7)N_(0.3);涂层中Ti-N、Ti-C键随着碳含量的增加呈现先增加后减少趋势,当碳含量为31.24 at%时,涂层中便有多余的非晶碳析出,形成金属陶瓷复合自润滑碳涂层nc-Ti(C,N)/a-C,此时涂层不锈钢的硬度最高为HV_(0.05)1052.2,同时涂层表现出较好的结合力、较低的摩擦因数及磨损率;涂层中碳含量为43.85 at%时,摩擦因数较低,在0.1以下波动,磨损率达最小值3.31×10^(−15) m^(3)/(N·m),但压痕周围有微裂纹产生。解释了自润滑碳对于金属陶瓷涂层性能的影响机制,可为高性能涂层的制备提供理论指导及试验依据。  相似文献   

8.
采用超音速火焰喷涂方法(HVOF)在304不锈钢基体表面制备WC和WC-12Co的复合涂层WC-Co,研究亚微米WC的添加对涂层相组成、显微硬度、耐磨性能和表面形貌的影响。利用X射线衍射、压痕法、往复式摩擦磨损实验和扫描电子显微镜(SEM)分别对涂层的相组成、显微硬度、磨损性能和表面形貌进行分析测试,并分析涂层的磨损过程和机制。结果表明,添加质量分数5%的亚微米WC颗粒显著提高了涂层的显微硬度(16.3%);增强了涂层的耐磨性,磨损率从6.09×10-7 mm3/Nm减小到5.15×10-7 mm3/Nm(减小13.8%);亚微米WC颗粒喷涂后在涂层中保持了WC相,并主要存在于WC-Co扁平粒子界面和孔隙。基于涂层中扁平粒子的结合特性与磨损失效特征,建立强化模型,分析亚微米WC颗粒对涂层扁平粒子界面的强化机制。  相似文献   

9.
采用电火花沉积分别制备了碳化铬基金属陶瓷单涂层和碳化铬基金属陶瓷/Ni复合涂层。采用X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度计和摩擦磨损试验机对比研究了单涂层和复合涂层的物相、微观组织结构、显微硬度和摩擦磨损性能。结果表明,两种涂层组织结构致密,与基体呈良好的冶金结合,并在涂层内形成了纳米晶的微观组织。复合涂层中FeCr0.29Ni0.16C0.06韧性相含量增加,在涂层界面处存在过渡层Ni,并以塑性变形的方式释放了更多沉积时产生的热应力,因而涂层裂纹明显减少。复合涂层的峰值硬度(1186HV0.05)虽略低于单涂层,但该涂层具有最小的摩擦系数(0.2462),1h磨损量仅为单涂层的1/3,因此表现出更好的耐磨性能,其主要磨损机制为磨粒磨损和疲劳磨损。  相似文献   

10.
在 CrZrCu 基体上电镀 Ni 粘结层,通过超音速火焰喷涂(HVOF)技术,采用不同煤油流量在电镀 Ni 粘结层上制备了 WC-12Co / NiCrBSi 复合涂层。 利用 XRD、SEM、Raman、维氏显微硬度计、电子拉伸试验机和球盘式摩擦磨损试验机考察了不同煤油流量下涂层相组成、组织结构、力学性能和高温摩擦磨损性能。 结果表明:不同涂层的物相组成基本相同,喷涂过程中发生了一定程度的分解脱碳生成了 W2C,以及少量的 Cr7C3 和 Co3W3C 相;随着煤油流量升高,涂层硬度提高,涂层孔隙率和耐磨性表现出先降低后升高趋势,致密的结构与较高的硬度有利于提高涂层的耐磨性;煤油流量为 26 L/ h 的工艺下制备的涂层孔隙率最低,为 0. 11%,硬度较高达到 927. 0 HV0. 3 ,摩擦因数最低约为 0. 46,磨损率最低为 2. 83×10-15 m3 / (N·m),抗粘着磨损性能最好。  相似文献   

11.
In order to solve the friction, wear and lubrication problems of titanium, a series of TaN/ployether- ether-ketone (PEEK) coatings were developed by electrophoretic deposition, and the effects of TaN nanoparticles on the microstructure, mechanical properties and tribological performance of coatings were explored. Results manifest that the introduction of TaN nanoparticles into PEEK coatings could improve the deposition efficiency, enhance the resistant deform capacity, increase the hardness, elastic modulus and adhesive bonding strength. Compared with the pure PEEK coating, the friction coefficient of P-TN-3 was greatly reduced by 31.25%. The wear resistance of P-TN-3 was also improved in huge boost, and its specific wear rate was decreased from 9.42×10-5 to 1.62×10-5 mm3·N-1·m-1. The homogeneous composite TaN/PEEK coatings prepared by electrophoretic deposition were well-adhered to the titanium alloy substrate, TaN nanoparticles could improve the strength of PEEK coating, and provide wear-resistance protection for titanium alloys.  相似文献   

12.
为进一步提高爆炸喷涂WC-12Co涂层的耐磨性,在WC-12Co合金粉末中添加不同比例的MoS2粉末,利用爆炸喷涂技术在Q235钢表面制备了系列WC-12Co/MoS2复合涂层.采用金相显微镜、扫描电子显微镜、X射线衍射仪、显微硬度计及摩擦磨损试验机对WC-12Co/MoS2复合涂层的微观组织形貌、结构、显微硬度、摩擦磨损性能进行了研究.结果表明,MoS2均匀的分布于复合涂层中,当MoS2含量为2%时,复合涂层的硬度、致密度变化不大,但摩擦系数和磨损率大幅度下降,分别为WC-12Co涂层的50%和36%.随着MoS2含量的增加,复合涂层的摩擦系数和磨损率均呈上升趋势.  相似文献   

13.
Although corrosion and friction/wear behavior of Fe-based amorphous coatings and their composites has been extensively studied during the past decade, there is very limited work related to tribocorrosion behavior. In this paper, the tribocorrosion behavior of a Fe-based amorphous composite coating reinforced with 20 wt.% Al2O3 particles was investigated in a 3.5% NaCl solution on a ball-on-disk tester and was compared to the monolithic amorphous coating and 316L stainless steel (SS). The results showed that the amorphous composite coating exhibited the highest tribocorrosion resistance among the three materials tested, as evidenced by the lowest coefficient of friction (~0.3) and tribocorrosion wear rate (~1.2 × 10?5 mm3/N·m). In addition, potentiodynamic polarization measurements before and during tribocorrosion testing demonstrated that corrosion resistance of the amorphous composite coating was not influenced so much by mechanical loading compared to the amorphous coating and the 316L SS. Observations on the worn surface revealed a corrosion-wear- and oxidational-wear-dominated tribocorrosion mechanism for the composite coatings. The excellent tribocorrosion resistance of the composite coating results from the effect of chemically stable Al2O3 phase which resists oxidation and delamination during sliding, along with poor wettability with corrosive NaCl droplets.  相似文献   

14.
Mechanical properties such as Young’s moduli and fracture toughness of plasma-sprayed Cr3C2-NiCr, WC-Co and Cr2O3 coatings were measured. The tribological properties of the three kinds of coatings were investigated with a block-on-ring self-mated arrangement under water-lubricated sliding. Furthermore, the influences of the mechanical properties on the tribological properties of the coatings were also examined. It was found that the Young’s moduli, bend strengths and fracture toughness of the coatings were lower than the corresponding bulk materials, which may be attributed to the existence of pores and microcracks in the coatings. Among the three kinds of coatings, the magnitude of wear coefficients, in decreasing order, is Cr3C2-NiCr, WC-Co and Cr2O3, and the wear coefficient of Cr2O3 coating was less than 1 × 10−6mm3N−1m−1. The wear mechanisms of the coatings were explained in terms of microcracking and fracturing, and water deteriorated wear performance of the coatings. The higher the fracture toughness and the lower the porosity and length of microcracking of the coating, the more the wear-resistance of the coating.  相似文献   

15.
采用电火花沉积分别在空气和氩气中制备了Mo_2FeB_2基金属陶瓷涂层,通过扫描电镜(SEM)、X射线衍射(XRD)、显微硬度计和摩擦磨损试验机研究了沉积气氛对涂层形貌、相组成、硬度和摩擦磨损性能的影响。结果表明,2种气氛中沉积所得涂层的组织结构都致密,涂层与基体间无分层,呈冶金结合的特征,但空气中沉积涂层的表面较粗糙,并发生了严重的氧化,涂层均匀性也较差。它们都主要由非晶相和马氏体相组成,但氩气中沉积的涂层含有更多的非晶相。氩气和空气中沉积涂层的最大显微硬度(HV_(0.05))分别为12 862和10 129 MPa,相差2733 MPa,前者涂层2 h的磨损量几乎仅为后者涂层的1/7,表现出更好的耐磨性。2种涂层的主要磨损机制都是疲劳磨损和磨粒磨损,但氩气中沉积涂层以疲劳磨损为主,空气中沉积涂层则以磨粒磨损为主。  相似文献   

16.
为了提高3D打印镍基高温合金强度、硬度及耐磨性能,使用激光选区熔化技术(Selective laser melting,SLM)制备添加不同质量分数TiC增强Inconel 625合金材料,并对比添加不同质量分数TiC(4 wt.%和8 wt.%)所制备的SLM TiC/Inconel 625试样的摩擦磨损性能。结合X射线衍射仪(XRD),金相显微镜(OM),扫描电子显微镜(SEM)及能谱分析(EDS)等材料表征手段对TiC/Inconel 625试样的物相分布,微观组织结构及磨损前后的元素分布进行对比分析。结果表明,随着TiC含量的增高,SLM TiC/Inconel 625硬度从325 HV_(0.2)(不含TiC)升高到了587 HV_(0.2)(SLM 8 wt.%TiC/Inconel 625),磨损率也由22.4×10~(-5)mm~3/(N·m)下降为9.8×10~(-5)mm~3/(N·m)。其中,平均摩擦磨损系数最小的为SLM 4 wt.%Ti C/Inconel 625 (COF=0.47)。综合对比可以发现通过添加适量的TiC颗粒可以有限改善SLM Inconel 625的硬度及耐磨损性能。  相似文献   

17.
针对MoS_2基复合涂层耐磨性差和承载能力低的问题,以不同含量(质量分数)的CeO_2作为添加剂,采用喷涂法在GCr15钢表面制备MoS_2基复合涂层。利用摩擦磨损试验机和划痕仪分别研究涂层摩擦磨损性能和结合强度,并借助金相显微镜对涂层磨损形貌进行表征。结果表明:添加适量CeO_2可以改善涂层的摩擦磨损性能,其最佳含量为2%,此时摩擦因数和磨损量均最小,分别为0.232和0.011 3 mm~3;同时结合强度从22 N提高到28.29 N。涂层磨损量随载荷的增大而增大;而载荷小于8 N时,涂层的摩擦因数随载荷的增大而减小,当载荷大于8 N时,摩擦因数又有回升趋势。添加稀土后涂层的承载能力有明显提高。未添加稀土时,涂层产生严重剥离,并发生磨粒磨损;添加2%CeO_2后,涂层发生轻微磨粒磨损,耐磨性得到显著提高。  相似文献   

18.
The effects of rapid pulse electric current sintering (PECS), substitution of WC by NbC and Co by Ni, and carbide additives (TiC and Mo2C) on the microstructure, elastic modulus, B3B transverse rupture strength (TRS) and high temperature sliding wear on WC-Co, WC-Ni, NbC-Co and NbC-Ni cermets were studied. Additions of x% Mo2C and y% TiC (where x and y were <10 wt%), coupled with PECS, significantly refined the NbC-Ni cermet's carbide grain size from ~5.0 μm to <0.8 μm, giving mechanical properties comparable to WC-Co and WC-Ni cermets: >14 GPa hardness and ~10 MPa.m1/2 fracture toughness (KIC) and ball-on-three-balls (B3B) TRS > 1600 MPa. The sintering techniques had negligible effect on the samples' elastic and shear modulus, and all WC-based samples had higher elastic modulus than all NbC-based samples (by ~120 GPa). High temperature sliding wear tests were carried out using a ball-on-disk tribometer, with a 10 N force, at a sliding speed of 1.34 m/s for 0.8 km (10 min) and 2.4 km (30 min), using 100Cr6 (AISI 52100) steel balls at 400 °C and 0% humidity. For the 2.4 km sliding distance, all the WC cermets had lower wear volumes than NbC cermets, with LPS WC-0.5Cr3C2-10Co having the lowest wear volume. Additions of TiC and Mo2C to NbC-12Ni improved the sliding wear resistance, with TiC having the greater effect, reducing the sample wear rate by over 30% from 15.1 × 10−6 mm3/N·m to 9.4 × 10−6 mm3/N·m after sliding distance of 2.4 km. Generally, the LPS samples had lower wear volumes than the corresponding SPS samples, due to higher K1c and TRS.  相似文献   

19.
为了提高TC4合金的耐磨性能,采用激光热喷涂技术在其表面制备了Co30Cr8W1.6C3Ni1.4Si涂层。通过扫描电子显微镜(SEM)和X射线衍射(XRD)分析了涂层的形貌和物相,并通过摩擦磨损实验研究了涂层在PAO+2.5% MoDTC(质量分数)油中的磨损行为。结果表明,激光热喷涂的Co30Cr8W1.6C3Ni1.4Si涂层主要由Ti、WC1-x、CoO、Co2Ti4O和CoAl相组成,在涂层界面形成冶金结合。在激光功率为1000、1200和1400 W时所制备的涂层平均摩擦因数分别为0.151、0.120和0.171,其对应的磨损率分别为1.17×10-6、1.33×10-6和2.80×10-6 mm3?N-1?m-1,磨损机理为磨粒磨损,其枝晶尺寸对降磨起主要作用。  相似文献   

20.
Plasma electrolytic oxidation(PEO) of cast A356 aluminum alloy was carried out in 32 g/L NaAlO2 with the addition of different concentrations of NaOH. The stability of the aluminate solution is greatly enhanced by increasing the concentration of NaOH. However, corresponding changes in the PEO behaviour occur due to the increment of NaOH concentration. Thicker precursor coatings are required for the PEO treatment in a more concentrated NaOH electrolyte. The results show that the optimal NaOH concentration is 5 g/L, which improves the stability of storage electrolyte to about 35 days, and leads to dense coatings with high wear performance (wear rate: 4.1×10−7 mm3·N−1·m−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号