首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Recent satellite missions have provided new perspectives by offering high spatial resolution, a variety of spectral properties, and fast revisit rates to the same regions. In this study, we examined the utility of both broadband red-edge spectral information and texture features for classifying paddy rice crops in South Korea into three different growth stages. The rice grown in South Korea can be grouped into early-maturing, medium-maturing, and medium-late-maturing cultivars, and each cultivar is known to have a minimum and maximum productivity. Therefore, the accurate classification of paddy rice crops into a certain time line enables pre-estimation of the expected rice yields. For the analysis, two seasons of RapidEye satellite image data were used. The results showed that the broadband red-edge information slightly improved the classification accuracy of the paddy rice crops, particularly when single-season image data were used. In contrast, texture information resulted in only minor improvement or even a slight decline in accuracy, although it is known to be advantageous for object-based classification. This was due to the homogeneous nature of paddy rice fields, as different rice cultivars are similar in terms of their morphology. Based on these results, we conclude that the additional spectral information such as the red-edge band is more useful than the texture features to detect different crop conditions in relatively homogeneous rice paddy environments. We therefore confirm the potential of broadband red-edge information to improve the classification of paddy rice crops. However, there is still a need to examine the relationship between textural properties and paddy rice crop parameters in greater depth.  相似文献   

2.
Accurate crop-type classification is a challenging task due, primarily, to the high within-class spectral variations of individual crops during the growing season (phenological development) and, second, to the high between-class spectral similarity of crop types. Utilizing within-season multi-temporal optical and multi-polarization synthetic aperture radar (SAR) data, this study introduces a combined object- and pixel-based image classification methodology for accurate crop-type classification. Particularly, the study investigates the improvement of crop-type classification by using the least number of multi-temporal RapidEye (RE) images and multi-polarization Radarsat-2 (RS-2) data utilized in an object- and pixel-based image analysis framework. The method was tested on a study area in Manitoba, Canada, using three different classifiers including the standard Maximum Likelihood (ML), Decision Tree (DT), and Random Forest (RF) classifiers. Using only two RE images of July and August, the proposed method results in overall accuracies (OAs) of about 95%, 78%, and 93% for the ML, DT, and RF classifiers, respectively. Moreover, the use of only two quad-pol images of RS-2 of June and September resulted in OAs of 92%, 75%, and 90% for the ML, DT, and RF classifiers, respectively. The best classification results were achieved by the synergistic use of two RE and two RS-2 images. In this case, the overall classification accuracies were 97% for both ML and RF classifiers. In addition, the average producer’s accuracies of 95% and 96% were achieved by the ML and RF classifiers, respectively, whereas the average user accuracy was 94% for both classifiers. The results indicated promising potentials for rapid and cost-effective local-scale crop-type classification using a limited number of high-resolution optical and multi-polarization SAR images. Very accurate classification results can be considered as a replacement for sampling the agricultural fields at the local scale. The result of this very accurate classification at discrete locations (approximately 25 × 25 km frames) can be applied in a separate procedure to increase the accuracy of crop area estimation at the regional to provincial scale by linking these local very accurate spatially discrete results to national wall-to-wall continuous crop classification maps.  相似文献   

3.
The rapid and efficient detection of illicit drug cultivation, such as that of Cannabis sativa, is important in reducing consumption. The objective of this study was to identify potential sites of illicit C. sativa plantations located in the semi-arid, southern part of Pernambuco State, Brazil. The study was conducted using an object-based image analysis (OBIA) of Système Pour l'Observation de la Terre high-resolution geometric (SPOT-5 HRG) images (overpass: 31 May, 2007). OBIA considers the target's contextual and geometrical attributes to overcome the difficulties inherent in detecting illicit crops associated with the grower's strategies to conceal their fields and optimizes the spectral information extracted to generate land-cover maps. The capabilities of the SPOT-5 near-infrared and shortwave infrared bands to discriminate herbaceous vegetation with high water content, and employment of the support vector machine classifier, contributed to accomplishing this task. Image classification included multiresolution segmentation with an algorithm available in the eCognition Developer software package. In addition to a SPOT-5 HRG multispectral image with 10 m spatial resolution and a panchromatic image with 2.5 m spatial resolution, first-order indices such as the normalized difference vegetation index and ancillary data including land-cover classes, anthropogenic areas, slope, and distance to water sources were also employed in the OBIA. The classification of segments (objects) related to illegal cultivation employed fuzzy logic and fixed-threshold membership functions to describe the following spectral, geometrical, and contextual properties of targets: vegetation density, topography, neighbourhood, and presence of water supplies for irrigation. The results of OBIA were verified from a weight of evidence analysis. Among 15 previously known C. sativa sites identified during police operations conducted on 5–17 June 2007, eight sites were classified as maximum-alert areas (total area of 22.54 km2 within a total area of object-oriented image classification of ~1800 km2). The approach proposed in this study is feasible for reducing the area to be searched for illicit cannabis cultivation in semi-arid regions.  相似文献   

4.
An algorithm using the unsupervised Bayesian online learning process is proposed for the segmentation of object-based video images. The video image segmentation is solved using a classification method. First, different visual features (the spatial location, colour and optical-flow vectors) are fused in a probability framework for image pixel clustering. The appropriate modelling of the probability distribution function (PDF) for each feature-cluster is obtained through a Gaussian distribution. The image pixel is then assigned a cluster number in a maximum a posteriori probability framework. Different from the previous segmentation methods, the unsupervised Bayesian online learning algorithm has been developed to understand a cluster's PDF parameters through the image sequence. This online learning process uses the pixels of the previous clustered image and information from the feature-cluster to update the PDF parameters for segmentation of the current image. The unsupervised Bayesian online learning algorithm has shown satisfactory experimental results on different video sequences.  相似文献   

5.
6.
This study presents a new method for the synergistic use of multi-scale image object metrics for land-use/land-cover mapping using an object-based classification approach. This new method can integrate an object with its super-objects’ metrics. The entire classification involves two object hierarchies: (1) a five-level object hierarchy to extract object metrics at five scales, and (2) a three-level object hierarchy for the classification process. A five-level object hierarchy was developed through multi-scale segmentation to calculate and extract both spectral and textural metrics. Layers representing the hierarchy at each of the five scales were then intersected by using the overlay tool, an intersected layer was created with metrics from all five scales, and the same geometric elements were retained as those of the objects of the lowest level. A decision tree analysis was then used to build rules for the classification of the intersected layer, which subsequently served as the thematic layer in a three-level object hierarchy to identify shadow regions and produce the final map. The use of multi-scale object metrics yielded improved classification results compared with single-scale metrics, which indicates that multi-scale object metrics provide valuable spatial information. This method can fully utilize metrics at multiple scales and shows promise for use in object-based classification approaches.  相似文献   

7.
Mapping landscape features within wetlands using remote-sensing imagery is a persistent challenge due to the fine scale of wetland pattern variation and the low spectral contrast among plant species. Object-based image analysis (OBIA) is a promising approach for distinguishing wetland features, but systematic guidance for this use of OBIA is not presently available. A sensitivity analysis was tested using OBIA to distinguish vegetation zones, vegetation patches, and surface water channels in two intertidal salt marshes in southern San Francisco Bay. Optimal imagery sources and OBIA segmentation settings were determined from 348 sensitivity tests using the eCognition multiresolution segmentation algorithm. The optimal high-resolution (≤1 m) imagery choices were colour infrared (CIR) imagery to distinguish vegetation zones, CIR or red, green, blue (RGB) imagery to distinguish vegetation patches depending on species and season, and RGB imagery to distinguish surface water channels. High-resolution (1 m) lidar data did not help distinguish small surface water channels or other features. Optimal segmentation varied according to segmentation setting choices. Small vegetation patches and narrow channels were more recognizable using small scale parameter settings and coarse vegetation zones using larger scale parameter settings. The scale parameter served as a de facto lower bound to median segmented object size. Object smoothness/compactness weight settings had little effect. Wetland features were more recognizable using high colour/low shape weight settings. However, an experiment on a synthetic non-wetland image demonstrated that, colour information notwithstanding, segmentation results are still strongly affected by the selected image resolution, OBIA settings, and shape of the analysis region. Future wetland OBIA studies may benefit from strategically making imagery and segmentation setting choices based on these results; such systemization of future wetland OBIA approaches may also enhance study comparability.  相似文献   

8.
Detailed, up-to-date information on intra-urban land cover is important for urban planning and management. Differentiation between permeable and impermeable land, for instance, provides data for surface run-off estimates and flood prevention, whereas identification of vegetated areas enables studies of urban micro-climates. In place of maps, high-resolution images, such as those from the satellites IKONOS II, Quickbird, Orbview and WorldView II, can be used after processing. Object-based image analysis (OBIA) is a well-established method for classifying high-resolution images of urban areas. Despite the large number of previous studies of OBIA in the context of intra-urban analysis, there are many issues in this area that are still open to discussion and resolution. Intra-urban analysis using OBIA can be lengthy and complex because of the processing difficulties related to image segmentation, the large number of object attributes to be resolved and the many different methods needed to classify various image objects. To overcome these issues, we performed an experiment consisting of land-cover mapping based on an OBIA approach using an IKONOS II image of a southern sector of São José dos Campos city (covering an area of 12 km2 with 50 neighbourhoods), which is located in São Paulo State in south-eastern Brazil. This area contains various occupation and land-use patterns, and it therefore contains a wide range of intra-urban targets. To generate the land-cover map, we proposed an OBIA-based processing framework that combines multi-resolution segmentation, data mining and hierarchical network techniques. The intra-urban land-cover map was then evaluated through an object-based error matrix, and classification accuracy indices were obtained. The final classification, with 11 classes, achieved a global accuracy of 71.91%.  相似文献   

9.
High mapping accuracies occur where crops differ spectrally (e.g.>90.0%; canola, corn, soybeans) and vice versa (e.g. <75.0%; cereals and pasture). Developing improved mapping methods has been an ongoing priority of Agriculture and Agri-Food Canada (AAFC) remote-sensing science. To this end, this study tests a data-driven object-based classification method using Discriminant Analysis (DA) method for mapping cereals and pasture from satellite data. In this approach, variables (number >400) derived from the image segmentation and object-based feature extraction of multi-date and multi-band optical (RapidEye) and microwave (RADARSAT-2) imagery were applied in a data-driven approach. We use in situ and satellite information collected over two study sites with different levels of heterogeneity (Winnipeg, Brandon) situated in the Canadian Prairies during the 2013 growing season to assess: (a) the type of DA model that most accurately classifies the cereals and pasture cover classes; and (b) how the classification accuracies obtained by the application of this DA model compare to those obtained from more traditional Maximum Likelihood (ML), Decision Tree (DT), and Random Forest (RF) classifications. We found that our DA-based approach was able to map cereals and pastures at our two study sites with the highest accuracies, but these accuracies did not improve significantly with the use of more complex DA model (including priori classification probabilities, more input principle components (PCs), the use of weights proportional to field area). Our results are encouraging for the wider application of the data-driven pre-processing of the inputs to the image classification by DA.  相似文献   

10.
High-resolution satellite imaging provides a wealth of details about the Earth's surface, but it is still a challenge to determine the complex, impervious surface from high-resolution satellite images. A pixel- and object-based hybrid analysis (POHA) method is proposed for the extraction task. Pixel-based analysis is first applied to provide prior knowledge; then, based on prior knowledge, the subsequent object-based analysis is simply to find similar rather than new impervious objects using a weighted minimum distance strategy. In order to combine different image analysis methods, the segmentation masking strategy was introduced to transform the image analysis from pixel level to object level. A QuickBird image of Hangzhou City in China was used to test POHA. Furthermore, POHA was compared with both the pixel-based analysis and object-based image analysis (OBIA) methods, showing that POHA runs with limited human–computer interactions, and can provide accurate impervious surface mapping.  相似文献   

11.
Multimedia Tools and Applications - A novel sub-part learning scheme is introduced in our work for the purpose of recognizing handwritten numeral images. The idea is borrowed from the concept of...  相似文献   

12.
Abstract

Abstract. Artificial neural networks have been used recently for speech and character recognition. Their application for the classification of remotely-sensed images is reported in this Letter. Remotely sensed image data are usually large in size and spectral overlaps among classes of ground objects are common. This results in low convergence performance of the Back-Propagation Algorithm in a neural network classifier. A Blocked Back-Propagation (BB-P) algorithm was proposed arid described in this Letter. It improved convergence performance and classification accuracy.  相似文献   

13.
The random forest (RF) classifier is a relatively new machine learning algorithm that can handle data sets with large numbers and types of variables. Multi-scale object-based image analysis (MOBIA) can generate dozens, and sometimes hundreds, of variables used to classify earth observation (EO) imagery. In this study, a MOBIA approach is used to classify the land cover in an area undergoing intensive agricultural development. The information derived from the elevation data and imagery from two EO satellites are classified using the RF algorithm. Using a wrapper feature selection algorithm based on the RF, a large initial data set consisting of 418 variables was reduced by ~60%, with relatively little loss in the overall classification accuracy. With this feature-reduced data set, the RF classifier produced a useable depiction of the land cover in the selected study area and achieved an overall classification accuracy of greater than 90%. Variable importance measures produced by the RF algorithm provided an insight into which object features were relatively more important for classifying the individual land-cover types. The MOBIA approach outlined in this study achieved the following: (i) consistently high overall classification accuracies (>85%) using the RF algorithm in all models examined, both before and after feature reduction; (ii) feature selection of a large data set with little expense to the overall classification accuracy; and (iii) increased interpretability of classification models due to the feature selection process and the use of variable importance scores generated by the RF algorithm.  相似文献   

14.
图像情感特征的分类与提取   总被引:1,自引:0,他引:1  
黄崑  赖茂生 《计算机应用》2008,28(3):659-661
分析了图像情感特征的特点并提出三层结构的分类方法,以彩色自然风景图片为例,选取了典型的情感特征,采用排序调查法收集用户评价,并通过多元线性回归方法建立图像颜色特征与用户评价的映射关系,用于彩色自然风景图片情感特征的自动提取。最后通过实验验证了三层结构的合理性,以及所建立映射关系对于正确预测彩色自然风景图片情感特征的有效性。  相似文献   

15.

The present study reports classification and analysis of composite land features using fusion images obtained by fusing two original hyperspectral and multispectral datasets. The high spatial-spectral resolution, multi-instrument and multi-period satellite images were used for fusion. Three pixel level fusion based techniques, Color Normalized Spectral Sharpening (CNSS), Principal Component Spectral Sharpening Transform (PCSST) and Gram-Schmidt Transform (GST), were implemented on the datasets. Performance evaluations of three fusion algorithms were done using classification results. The Support Vector Machine (SVM) and Gaussian Maximum Likelihood Classification (MLC) were used for classification using five types of images, viz. hyperspectral, multispectral and three fused images. Number of classes considered was eight. Sufficient number of ground field data for each class has also been acquired which was needed for supervise based classification. The accuracy was improved from 74.44 to 97.65% when the fused images were considered with SVM classifier. Similarly, the results were improved from 69.25 to 94.61% with original and fused data using MLC classifier. The fusion image technique was found to be superior to the single original image and the SVM is better than the MLC method.

  相似文献   

16.
Li  Pengzhi  Li  Jianqiang  Chen  Yueda  Pei  Yan  Fu  Guanghui  Xie  Haihua 《The Journal of supercomputing》2021,77(3):2645-2666

In this paper, we propose a diagnosis and classification method of hydrocephalus computed tomography (CT) images using deep learning and image reconstruction methods. The proposed method constructs pathological features differing from the other healthy tissues. This method tries to improve the accuracy of pathological images identification and diagnosis. Identification of pathological features from CT images is an essential subject for the diagnosis and treatment of diseases. However, it is difficult to accurately distinguish pathological features owing to the variability of appearances, fuzzy boundaries, heterogeneous densities, shapes and sizes of lesions, etc. Some study results reported that the ResNet network has a better classification and diagnosis performance than other methods, and it has broad application prospectives in the identification of CT images. We use an improved ResNet network as a classification model with our proposed image reconstruction and information fusion methods. First, we evaluate a classification experiment using the hydrocephalus CT image datasets. Through the comparative experiments, we found that gradient features play an important role in the classification of hydrocephalus CT images. The classification effect of CT images with small information entropy is excellent in the evaluation of hydrocephalus CT images. A reconstructed image containing two channels of gradient features and one channel of LBP features is very effective in classification. Second, we apply our proposed method in classification experiments on CT images of colonography polyps for an evaluation. The experimental results have consistency with the hydrocephalus classification evaluation. It shows that the method is universal and suitable for classification of CT images in these two applications for the diagnosis of diseases. The original features of CT images are not ideal characteristics in classification, and the reconstructed image and information fusion methods have a great effect on CT images classification for pathological diagnosis.

  相似文献   

17.
In order to highlight the different features of different input images, a SPCNN model with automatic setting parameter based on features is proposed, which is combined with sparse representation to fuse the multi source images. The fusion process has four steps. Firstly, the source images are decomposed into high frequency coefficients and low frequency coefficient by NSST. Each high frequency coefficient is fired by the SPCNN model with automatic set parameters based on the inherent characteristics, and the fused image is completed according to the total number of firing and the weighted fusion strategy. The low frequency coefficients are fused by a sparse representation. Finally, the fused image is reconstructed by inverse NSST. The experimental results show that the proposed method is superior to the other five classical methods and the fused image conforms to the human visual perception system, with clear structure and obvious details.  相似文献   

18.
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms.  相似文献   

19.
20.
Object-based image analysis (OBIA) is a new remote-sensing-based image processing technology that has become popular in recent years. In spite of its remarkable advantages, the segmentation results that it generates feature a large number of mixed objects owing to the limitations of OBIA segmentation technology. The mixed objects directly influence the acquisition of training samples and the labelling of objects and thus affect the stability of classification performance. In light of this issue, this article evaluates the influence of classification uncertainty on classification performance and proposes a sampling strategy based on active learning. This sampling strategy is novel in two ways: (1) information entropy is used to evaluate the classification uncertainty of segmented objects; all segmented objects are classified as having zero or non-zero entropies, and the latter are arranged in terms of decreasing entropy. (2) Based on an evaluation of the influence of classification uncertainty on classification performance, an active learning technology is developed. A certain proportion of zero-entropy objects is acquired via random sampling used as seed training samples for active learning, non-zero-entropy objects are used as a candidate set for active learning, and the entropy query-by-bagging (EQB) algorithm is used to conduct active learning to acquire optimal training samples. In this study, three groups of high-resolution images were tested. The test results show that zero-entropy and non-zero-entropy objects are indispensable to the classifier, where the optimal range of the ratio of combination of the two is between 0.2 and 0.6. Moreover, the proposed sampling strategy can effectively improve the stability and accuracy of classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号