首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single lap joint is the most studied type of adhesive joint in the literature. However, the joint strength prediction of such joints is still a controversial issue as it involves a lot of factors that are difficult to quantify such as the overlap length, the yielding of the adherend, the plasticity of the adhesive and the bondline thickness. The most complicated case is that where the adhesive is brittle and the overlap long. In any case, there is still a problem that is even more difficult to take into account which is the durability. There is a lack of experimental data and design criteria when the joint is subjected to high, low or variable temperature and/or humidity. The objective of this work is to carry out and quantify the various variables affecting the strength of single lap joints in long term, especially the effect of the surface preparation. The Taguchi method is used to decrease the number of experimental tests. The effect of material, geometry, surface treatment and environment is studied and it is shown that the main effect is that of the overlap length.In order to quantify the influence of the adhesive (toughness and thickness), the adherend (yield strength and thickness), the overlap, the test speed, the surface preparation and durability on the lap shear strength, the experimental design technique of Taguchi was used in the present study. An experimental matrix of 18 tests was designed and each test was repeated three times. The influence of the eight previously-mentioned variables could be assessed using the statistical software Statview®. In this paper a simple predictive equation is proposed for the design of single lap joints.  相似文献   

2.
An experimental–computational fracture-mechanics approach for the analysis and design of structural adhesive joints under static loading is demonstrated by predicting the ultimate fracture load of cracked lap shear and single lap shear aluminum and steel joints bonded using a highly toughened epoxy adhesive. The predictions are then compared with measured values. The effects of spew fillet, adhesive thickness, and surface roughness on the quasi-static strength of the joints are also discussed. This fracture-mechanics approach is extended to characterize the fatigue threshold and crack growth behavior of a toughened epoxy adhesive system for design purposes. The effects of the mode ratio of loading, adhesive thickness, substrate modulus, spew fillet, and surface roughness on the fatigue threshold and crack growth rates are considered. A finite element model is developed to both explain the experimental results and to predict how a change in an adhesive system affects the fatigue performance of the bonded joint.  相似文献   

3.
The effect of adhesive thickness on tensile and shear strength of a polyimide adhesive has been investigated. Tensile and shear tests were carried out using butt and single lap joints. Commercially available polyimide (Skybond 703) was used as adhesive and aluminum alloy (5052-H34) was used as adherends. The tensile strength of the butt joints decreased with increasing adhesive thickness. In contrast, adhesive thickness did not seem to affect the shear strength of single lap joints. The fabricated joints using the polyimide adhesive failed in an interfacial manner regardless of adhesive thickness. The linear elastic stress analysis using a finite element method (FEM) indicates that the normal stress concentrated at the interface between the adherend and the adhesive. The FEM analysis considering the interfacial stress well explains the effect of adhesive thickness on the joint strength.  相似文献   

4.
This paper discusses the static and fatigue behavior of adhesively bonded single lap joints in SMC-SMC composites. Effects of lap length and adhesive thickness on the static and fatigue strength of SMC-SMC adhesive joints are studied. Effects of SMC surface preparation and test speed on the joint performance are evaluated. Finally, the effect of water exposure on the joint durability is also investigated. Results show that the static behavior of adhesive joints in SMC-SMC composites is significantly influenced by the lap length and adhesive thickness. With an increase in lap length from 12.7 mm to 38.1 mm, the joint failure load increases by 37%. The joint failure load also increases with the adhesive thickness, but it reaches a maximum at an adhesive thickness of 0.33 mm and then decreases. However, lap length and adhesive thickness have negligible effect on the ratio of fatigue strength to static strength. The fatigue strength at 106 cycles is approximately 50% to 54% of the static strength for various adhesive thicknesses and lap lengths investigated in this study. Adhesive failure, fiber tear or combination of these two failure modes are observed during both static and fatigue tests.  相似文献   

5.
Too often adhesive thickness, adherend thickness and other geometric factors are not explicitly considered in adhesive joint design. This study includes experimental and computational research exploring the means of enhancing the engineering design process for adhesive lap joints to include such effects. It clearly demon-strated that both the cleavage stresses and the shear stresses, near the bond termini, play important roles in lap 'shear' joint failure. Finite Element and Fracture Mechanics analyses were used to examine the energy release rate applied to growth of cracks in adhesive lap joints. Lap joints with similar geometries to those analyzed were designed, fabricated and tested. In a separate set of experiments the bond termini were constrained in the direction normal to the uniaxial loading. If the strength of lap shear joints is dominated by the adhesive shear strength, then constraining the lateral motion of the bond termini should have little or no effect on the overall shear strength of the adhesive joint. This work clearly demonstrates that this is not the case. If cleavage stresses are important in lap joints then constraining the bond termini, in a direction normal to the bond area, should have a commensurate effect on the overall strength of the lap joint. None of the ASTM standardized 'lap shear tests' provide any insight into this premise. This paper also presents analyses and experimental results for lap joints to which several methods of lateral constraint were applied near the bond termini. The analytical and numerical methods described and used for explaining and predicting such effects might be a useful adhesive joint design tool.  相似文献   

6.
通过理论分析和计算确定了动车组空调通风口部件与铝合金车体胶接用胶粘剂的强度指标。介绍了胶粘剂的选择及胶接结构的设计原则,考查了搭接长度、搭接宽度、胶层厚度和被粘接材料厚度等对胶接件粘接强度的影响。结果表明:车体与空调通风口部件的胶接接头选择受剪切应力作用的搭接接头较适宜,并且搭接接头的承载能力随搭接长度或宽度增加呈先快速上升后趋于稳定态势;当搭接长度为10 mm、胶层厚度为6 mm、铝合金板厚度为5 mm且常温湿固化型单组分PU(聚氨酯)胶粘剂的剪切强度超过0.23 MPa时,搭接接头的承载能力相对最大。  相似文献   

7.
Adhesively bonded composite single lap joints were experimentally investigated to analyze the bondline stress concentrations and characterize the influence of adhesive ductility on the joint strength. Two epoxy paste adhesives—one with high tensile strength and low ductility, and the other with relatively low tensile strength and high ductility—were used to manufacture composite single lap joints. Quasi-static tensile tests were conducted on the single lap joints to failure at room temperature. High magnification two-dimensional digital image correlation was used to analyze strain distributions near the adhesive fillet regions. The failure mechanisms were examined using scanning electron microscopy to understand the effect of adhesive ductility on the joint strength. For a given surface treatment and laminate type, the results show that adhesive ductility significantly increases the joint strength by positively influencing stress distribution and failure mechanism near the overlap edges. Moreover, it is shown that high magnification two-dimensional digital image correlation can successfully be used to study the damage initiation phase in composite bonded joints.  相似文献   

8.
The design of adhesively bonded joints is a quite difficult task, due to the stress singularity that arises at the edges of the adhesive adjacent to the loaded substrate. This stress singularity makes any design approach based on elastic stress analysis inconvenient. A more convenient design tool for an adhesive joint should be based on its mode of failure. Most of the adhesive joints fail at the adhesive/adherend interface or very close to it in the adhesive layer. Therefore, a fracture theory such as linear elastic fracture mechanics (LEFM) can be used to analyse the failure of an adhesive joint. In this paper, the design of a single lap joint using a fracture mechanics parameter, i.e. the strain energy release rate (SERR), is discussed. The SERR is extracted from a finite element model using Irwin's virtual crack closure integral. A design equation relating the lap length to the adherend thickness through some design parameters is derived.  相似文献   

9.
One parameter that influences the adhesively bonded joints performance is the adhesive layer thickness. Hence, its effect has to be investigated experimentally and should be taken into consideration in the design of adhesive joints. Most of the results from literature are for typical structural epoxy adhesives which are generally formulated to perform in thin sections. However, polyurethane adhesives are designed to perform in thicker sections and might have a different behavior as a function of adhesive thickness. In this study, the effect of adhesive thickness on the mechanical behavior of a structural polyurethane adhesive was investigated. The mode I fracture toughness of the adhesive was measured using double-cantilever beam (DCB) tests with various thicknesses of the adhesive layer ranging from 0.2 to 2 mm. In addition, single lap joints (SLJs) were fabricated and tested to assess the influence of adhesive thickness on the lap-shear strength of the adhesive. An increasing fracture toughness with increasing adhesive thickness was found. The lap-shear strength decreases as the adhesive layer gets thicker, but in contrast to joints with brittle adhesives the decrease trend was less pronounced.  相似文献   

10.
Non-linear finite element methods are applied in the analysis of single lap joints between fibre-reinforced plastics (FRP) and metals. The importance of allowing for both geometric and material non-linearities is shown. The optimization of single lap joints is done by modifying the geometry of the joint ends. Different shapes of adhesive fillet, reverse tapering of the adherend, rounded edges and denting are applied in order to increase the joint strength. The influence of the joint-end geometry is shown for different metal adherend/FRP adherend/adhesive combinations. The results of the numerical predictions suggest that with a careful joint-end design the strength of the joints can be increased by 90–150%.  相似文献   

11.
Four-point bend tests were performed on single lap joints with hard steel adherends and a structural epoxy adhesive. The effect of the overlap, the adherend thickness and the adhesive thickness was studied. It was found that the length of the overlap has no significant effect on the strength of the joints. This is because the load transfer is occurring in a very localised area around the edges of the overlap, being the failure governed by peel mechanisms. The thickness of the adherends strongly affects the strength of the joints. The thicker the adherend, the stronger is the joint. The experimental results are compared with a finite element model and reinforce the fact that the failure takes place due to local strains at the ends of the overlap in tension. An analytical model is also given to predict in a simple but effective way the joint strength and its dependence on the adherend thickness.  相似文献   

12.
Experimental tests and finite element method (FEM) simulation were implemented to investigate T700/TDE86 composite laminate single-lap joints with different adhesive overlap areas and adherend laminate thickness. Three-dimensional finite element models of the joints having various overlap experimental parameters have been established. The damage initiation and progressive evolution of the laminates were predicted based on Hashin criterion and continuum damage mechanics. The delamination of the laminates and the failure of the adhesive were simulated by cohesive zone model. The simulation results agree well with the experimental results, proving the applicability of FEM. Damage contours and stress distribution analysis of the joints show that the failure modes of single-lap joints are related to various adhesive areas and adherend thickness. The minimum strength of the lap with defective adhesive layer was obtained, but the influence of the adhesive with defect zone on lap strength was not decisive. Moreover, the adhesive with spew-fillets can enhance the lap strength of joint. The shear and normal stress concentrations are severe at the ends of single-lap joints, and are the initiation of the failure. Analysis of the stress distribution of SL-2-0.2-P/D/S joints indicates that the maximum normal and shear stresses of the adhesive layer emerge on the overlap ends along the adhesive length. However, for the SL-2-0.2-D joint, the maximum normal stress emerges at the adjacent middle position of the defect zone along the adhesive width; for the SL-2-0.2-S joint, the maximum normal stress and shear stress emerge on both edges along the adhesive width.  相似文献   

13.
In the present study, mechanical properties of different single lap joint configurations derived from adherends with different thicknesses subjected to tensile loading were investigated experimentally and numerically. For this purpose, experimental studies were conducted on two different types of SLJ samples, the first type with identical upper and lower adherend thicknesses and the second with different upper and lower adherend thicknesses. For the first type, five different thickness values were tested. For the second type, the lower adherend thickness was constant while five different upper adherend thickness values were tested. The adhesive was prepared from a two-part paste. After the experimental studies, stress analyses on the SLJs were performed with three-dimensional finite element analysis by considering the geometrical non-linearity and the material non-linearities of the adhesive (DP460) and adherend (AA2024-T3). It was observed that, in single lap joint geometry, variation in the thickness of the adherend and the use of lower and upper adherends with different thickness values changed the stress concentrations at the edges of the overlap regions, affecting the experimental failure load of the joints.  相似文献   

14.
In this paper, manufacturing technology of the tubular single lap adhesive joint was studied to obtain reliable and optimal joint quality. In addition, a surface preparation method and a bonding process for the joint were devised. The effect of the adhesive thickness and the adherend roughness on the fatigue strength of the joint was experimentally investigated. From experiments, it has been found that the fatigue strength of the joint increased as the adhesive thickness decreased and the optimal arithmetic surface roughness of the adherends was about 2 μm.  相似文献   

15.
Employing a functionally graded adhesive the efficiency of adhesively bonded lap joints can be improved significantly. However, up to now, analysis approaches for planar functionally graded adhesive joints are still not addressed well. With this work, an efficient model for the stress analysis of functionally graded adhesive single lap joints which considers peel as well as shear stresses in the adhesive is proposed. Two differential equations of the displacements are derived for the case of an axially loaded adhesive single lap joint. The differential equations are solved using a power series approach. The model incorporates the nonlinear geometric characteristics of a single lap joint under tensile loading and allows for the analysis of various adhesive Young׳s modulus variations. The obtained stress distributions are compared to results of detailed Finite Element analyses and show a good agreement for several single lap joint configurations. In addition, different adhesive Young׳s modulus distributions and their impact on the peel and shear stresses as well as the influence of the adhesive thickness are studied and discussed in detail.  相似文献   

16.
The strength and interfacial behavior of single lap joints with graded adherends subjected to uniaxial tensile loading are investigated in the present paper. A bilinear cohesive zone model coupled with the finite element method is adopted to describe the damage and failure process of the adhesive layer. The peak loading, the rotation angle between the overlap of the joint and the horizontal direction, as well as the failure energy are investigated comprehensively. It is interesting to find that adopting different variation law in the graded adherends may result in varying strength of adhesive joints. By means of choosing proper material and geometry parameters of adhesive joints, the peak loading, the rotation angle and the failure energy of joints can be greatly improved. What is more, the strength of the SLJ is found to depend much more on the property of the soft part near the adhesive layer. The results should be helpful to guide the design of novel structures of adhesive joints in present and potential applications.  相似文献   

17.
In this paper, the performance of an automotive polyurethane adhesive was studied through adhesive joints tests. Butt joints and single lap joints were fabricated and tested at seven temperature measuring points (TMPs). It is shown that both the tensile strength and lap shear strength decrease with the increasing of temperature. Quadratic polynomial expression obtained by the least square method can represent the tensile and lap shear strength as a function of temperature very well. ?40°C, 0°C, and 90°C were selected as the most ideal TMPs for this adhesive through the comparison of the residual sums of squares of 35 fitting curves with different combination of TMPs. Scarf joints with adhesive angles of 60° and 30° were fabricated and tested at ?40°C, 0°C, and 90°C. It also showed a decrease in joint strength with the increasing temperature. Joint strength as a function of adhesive angle is presented. It was found to closely follow a linear behaviour. A three-dimensional surface, consisting of temperature, adhesive angle, and joint strength, is presented finally to facilitate the design of automotive bonding structures.  相似文献   

18.
The tensile performance of adhesively bonded CFRP joints has been investigated experimentally. In this study, overlap length, adherend thickness, adherend width and scarf angle were chosen as design parameters. All load–displacement curves are linear, except that the thicker single-lap joints behave slightly nonlinearity due to the bending effect caused by eccentric loading. The lap shear strength is not directly proportional to overlap length, adherend thickness, adherend width and scarf angle for the brittle adhesive studied in the paper. The major failure mode includes adhesive shear failure and adherend delamination failure, sometimes accompanying with some fiber pull-out. Finally, the lap shear strength of three different lap types with similar bonding area (W=25 mm, L=10 mm, θ=5.71°) and adherend thickness (0.96 mm) was analyzed. It is found that the double-lap joint has the highest ultimate failure load. However, when considering the lap region weight, the scarf-lap joint is the most efficient.  相似文献   

19.
The durability of adhesive joints is of special concern in structural applications and moisture has been identified as one of the major factors affecting joint durability. This is especially important in applications where joints are exposed to varying environmental conditions throughout their life. This paper presents a methodology to predict the stresses in adhesive joints under cyclic moisture conditioning. The single lap joints were manufactured from aluminium alloy 2024 T3 and the FM73®-BR127® adhesive-primer system. Experimental determination of the mechanical properties of the adhesive was carried out to measure the effect of moisture uptake on the strength of the adhesive. The experimental results revealed that the tensile strength of the adhesive decreased with increasing moisture content. The failure strength of the single lap joints also progressively degraded with time when conditioned at 50°C, immersed in water; however, most of the joint strength recovered after drying the joints. A novel finite element based methodology, which incorporated moisture history effects, was adopted to determine the stresses in the single lap joints after curing, conditioning, and tensile testing. A significant amount of thermal residual stress was present in the adhesive layer after curing the joints; however, hygroscopic expansion after the absorption of moisture provided some relief from the curing stresses. The finite element model used moisture history dependent mechanical properties to predict the stresses after application of tensile load on the joints. The maximum stresses were observed in the fillet areas in both the conditioned and the dried joints. Study of the stresses revealed that degradation in the strength of the adhesive was the major contributor in the strength loss of the adhesive joints and adhesive strength recovery also resulted in recovered joint strength. The presented methodology is generic in nature and may be used for various joint configurations as well as for other polymers and polymer matrix composites.  相似文献   

20.
The tensile load bearing capability of adhesively-bonded tubular single lap joints which is calculated under the assumption of linear mechanical adhesive properties is usually much less than the experimentally-determined because the majority of the load transfer of adhesively-bonded joints is accomplished by the nonlinear behavior of rubber-toughened epoxy adhesives. Also, as the adhesive thickness increases, the calculated tensile load bearing capability with the linear mechanical adhesive properties increases, while, on the contrary, the experimentally-determined tensile load bearing capability decreases.

In this paper, the stress analysis of adhesively-bonded tubular single lap steel-steel joints under tensile load was performed taking into account the nonlinear mechanical properties and fabrication residual thermal stresses of the adhesive. The nonlinear tensile properties of the adhesive were approximated by an exponential equation which was represented by the initial tensile modulus and ultimate tensile strength of the adhesive.

Using the results of stress analysis, the failure criterion for the adhesively-bonded tubular single lap steel-steel joints under tensile load was developed, which can be used to predict the load-bearing capability of the joint. From the failure criterion, it was found that the fracture of the adhesively-bonded joint was much influenced by the fabrication residual thermal stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号