首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dense B4C material was fabricated using spark plasma sintering (SPS), and the densification mechanisms and grain growth kinetics were revealed. The density, hardness, transverse flexure strength and toughness of samples were investigated and the model predictions were confirmed by SEM and TEM experimental observations. Results show that SPSed B4C exhibits two sintering periods: a densification period (1800–2000 °C) and a grain growth period (2100–2200 °C). Based on steady-state creep model, densification proceeds by grain boundary sliding and then dislocation-climb-controlled mechanism. Grain growth mechanism is controlled by grain boundary diffusion at 2100 °C, and then governed by volume or liquid-phase diffusion at 2200 °C.  相似文献   

2.
The grain growth kinetics of 8YSZ ceramics processed using spark plasma sintering (SPS) has been investigated in the temperature ranging from 1100°C to 1500°C. The activation energy during SPS densification was obtained as 332 kJ/mol with grain boundary diffusion as a dominant mechanism. Further, the effect of CeO2 on the densification kinetics of 8YSZ ceramic processed via SPS and conventional sintering (CS) has been delineated. The lower grain boundary mobility of CS-processed composites (an order of magnitude lower than SPS) is attributed to the solute drag and lattice distortion mechanism. However, no significant change in the grain boundary mobility was observed with CeO2 addition (~?14.7–43.9?×?10?18 m3/N/s for CS and 107.2–116.7?×?10?18 m3/N/s for SPS) revealing that the defect concentration is nearly constant in 8YSZ. The study highlights the effect of sintering techniques (SPS and CS) and reinforcement (CeO2) on engineering the desired microstructure of 8YSZ ceramic.  相似文献   

3.
Gas-atomized Ti–45Al–7Nb–0.3W alloy powders were consolidated by the spark plasma sintering (SPS) process. The densification course and the microstructural evolution of the as-atomized powders during SPS were systematically investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) techniques. As a result of SPS densification, special (α + γ) precipitation zones are formed in the initial stage of sintering, and the residual β phases in the microstructure of the powders are fragmentated. During the following SPS course, α2/γ lamellar colonies at the edge of the precipitation zone, α2 and B2 phase as well as dynamic recrystallized γ grains are found to form. For the as-atomized powders sintered at 1000 °C, the densification is preceded by the early rearrangement of the powder particles and the following formation of sintering necks. For the powders sintered at 1200 °C, plastic deformation plays an important role in densification. Local melting and surface bulging between two adjacent particles can also serve as one of the densification mechanisms. In the later stage of sintering, the growth of sintering necks controlled by diffusion and the pore closure would make important contributions to the densification.  相似文献   

4.
The microstructure evolution and densification kinetics of Al2O3/Ti(C,N) ceramic tool material during microwave sintering were studied. The density and grain growth significantly increases at the temperatures higher than 1400 °C. The calculated kinetics parameter n indicates that volume diffusion is the main densification mechanism when the sintering temperature is below 1300 °C, while grain boundary diffusion plays a leading role in the densification process when the sintering temperature is higher than 1300 °C. The grain growth activation energy of Al2O3/Ti(C,N) composite is 48.82 KJ/mol, which is much lower than those of monolithic Al2O3 in the microwave sintering and conventional sintering. The results suggested that the Al2O3/Ti(C,N) ceramic tool material with nearly full densification and fine grains can be prepared by two-step microwave sintering.  相似文献   

5.
This study aims to disclose the densification mechanism and grain growth behaviors during the spark plasma sintering (SPS) of undoped TiCN powder. The SPS experiments were performed under temperatures ranging from 1600 °C to 2200 °C and a fixed pressure of 50 MPa. The sintering mechanisms were described in different models according to two grain growth behaviors: densification without grain growth at low temperatures (1600–1700 °C) and grain growth without apparent densification at higher temperatures (1800–2200 °C). At the constant grain stage, a creep model is applied to describe the densification process. In addition, the effective stress exponents, n, are calculated, indicating that the densification can be attributed to both grain boundary sliding (n = 1.5) and dislocation climbing (n = 3.13 or n = 4.29). During the second stage of sintering, the grain growth model reveals that the grain-growth is controlled by grain boundary diffusion. In addition, the Vickers hardness varies from 4326 Hv to 6762 Hv when the density ranges from 90% to 96.3%.  相似文献   

6.
Tungsten has been considered as the most promising candidate for plasma-facing materials (PFMs) in a next generation fusion reactor. It is well known that commercialized ITER (International Thermonuclear Experimental Reactor) grade tungsten is manufactured by the mechanical processing at high temperature after sintering to ensure a high density with an improved structural stability. In this study, in order to obtain the high-density sintered tungsten with more enhanced structural stability, spark plasma sintering (SPS) method was employed, where a pulsed direct electric current was applied during heat treatment of powders with a pressure in the specimen. It is well known that by utilizing SPS, high-density sintered materials at a relatively lower temperature for a shorter time could be achieved compared to the other conventional sintering methods. In particular, in this study, reduction in H2 atmosphere and two-step sintering were introduced to remove the residual oxygen and achieve the full densification with suppressed grain growth at relatively low operating temperature. In an optimized condition, a fully densified sintered tungsten with a relative density of 99.9% and an average grain size of 4.4 μm was fabricated. The thermal stability of tungsten specimens was evaluated by high heat flux (HHF) test, where the surface temperature was set up to 2300 °C by nitrogen plasma. Then, the microstructural changes of the specimen surface have been examined after the HHF test. As a result, it was confirmed that the high-density sintered tungsten samples fabricated by SPS show an excellent microstructural stability for PFMs.  相似文献   

7.
In the present study, the influence of nano additives (Ni, Fe) and different mixing (turbular and magnetic) on the densification, microstructure and micro-hardness of the tungsten material under spark plasma sintering is analyzed. After turbulent mixing the nanoparticles are distributed widely in the W interparticle gaps but after magnetic mixing the nanoparticles are distributed not only on the gaps of the W particles but also on the broken surfaces. Ni incorporated tungsten materials achieved the maximum density of 98.3% at 1400 °C (turbular mixing) and 97.9% at 1300 °C (magnetic mixing). Fe incorporated tungsten material showed density of 97.7% at 1600 °C and 97.2% at 1400 °C after turbular and magnetic mixing. The influence of nanoparticles in the densification process was explained by Laplace force, boundary slip and Agte-Vacek effect. The microstructural analysis showed that nano-modification reduced the degree of porosity, and provides a compact material at low temperatures. X-ray fluorescence analysis reveals that magnetic mixing shows more uniform distribution of nanoparticles than turbular mixing. The nanoparticles incorporation increased the micro hardness of tungsten material. Hence, it is clear that magnetic mixing and nano modification greatly improved the densification and sintering behavior of the tungsten material.  相似文献   

8.
Boron carbide (B4C) ceramics, with a relative density up to 98.4% and limited grain growth, were prepared at 1600-1800 °C by spark plasma sintering (SPS) technique. The effects of powder milling medium (water and 2-propanol) on the powders' surface characteristics and TiB2 addition on the sintering densification were investigated. The ball milling processing of B4C powders in water can promote the sintering of B4C ceramics. A B2O3 layer on B4C particle surface is concluded to promote the densification of the B4C ceramics at an early sintering stage. This B2O3 layer, which normally inhibits the densification process at the final stage of the sintering, can be reduced through reaction with TiB2 particles, resulting in further densification of the B4C ceramics.  相似文献   

9.
In this paper, the effect of graphene nano-platelet (GNP) addition on the microstructure and sintering kinetics of ZrB2 during spark plasma sintering (SPS) is presented. SPS was carried out at 1800 °C temperature and 50 MPa pressure. GNP addition resulted in an increase in the relative density from 84% to 97%. Retention of GNPs after SPS was confirmed through Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) in conjunction with X-ray diffraction (XRD) and Raman spectroscopy. The effect of GNP reinforcement on sintering kinetics, microstructure and mechanical properties (Vickers micro hardness and indentation fracture toughness) are discussed. The ZrB2 -GNP samples showed different activation energies at different temperature ranges which are explained based on the likely processes that are involved during sintering. Final stage of sintering exhibited lower activation energy during which the GNP aided grain boundary sliding enhancing the densification. Several toughening mechanisms such as GNP fracture, GNP shearing, GNP bending and GNP pullout were observed.  相似文献   

10.
The densification mechanism and microstructure evolution of W-10Ti sputtering target prepared by spark plasma sintering (SPS) method at a temperature ranges from 900 to 1600 °C, with dwelling time of 6 min and fixed pressure of 30 MPa were investigated. Densification occurs mainly at low temperatures (900 to 1300 °C), while grain growth occurs at high temperatures (1400 to 1600 °C). The creep model has been used to reveal the densification process. The effective stress exponent n is calculated systematically, which indicates that the densification process is mainly due to the particle rearrangement (n < 1), grain boundary diffusion (n = 1–2), and dislocation climbing (n = 3.77 or 4.14). In addition, the apparent activation energy Qd is calculated to be 119.30 and 271.79 kJ/mol when the effective stress exponent n is equal to 1 and 2, respectively. It is also found that the microstructure of W-10Ti alloys is greatly affected by the sintering temperatures. The solution between W and Ti significantly improves with the increase of the sintering temperature. The solubility of W in βTi(W) exceeded the eutectoid point (28.97 wt% W) and the eutectoid structure (βW(Ti) + αTi) forms in cooling process when the temperature is up to 1300 °C. With the temperature increasing to 1500 °C, the composition of the βTi(W) phase is located in the miscibility gap of the (βTi(W), βW(Ti)) system, which tends to decompose in to βTi(W) and βW(Ti) phases.  相似文献   

11.
The densification kinetics of boron carbide (B4C) during multi-stage spark plasma sintering was studied. The densification mechanisms were analyzed according to the stress exponent n and the apparent activation energy Qd using a creep deformation model. The results showed that the densification mechanisms were controlled by viscous flow and grain boundary diffusion at the low effective stress with initial temperature range of 1600–2000 °C, while the dominant mechanism is the dislocation climb at the effective stress regime with final temperature of 2100 °C and the multi-stage sintering can reduce the apparent activation energy. Meanwhile, the scheme of multi-stage sintering can obtain nearly theoretical dense B4C and avoid grain growth. Therefore, the basic mechanical properties suggesting a good combination of high hardness (37.63GPa) and bending strength (539.86 MPa) was obtained by the multi-stage sintering.  相似文献   

12.
Cu?2Cr?1Nb alloy was fabricated by spark plasma sintering (SPS) using close coupled argon-atomized alloy powder as the raw material. The optimal SPS parameters obtained using the L9(34) orthogonal test were 950 °C, 50 MPa and 15 min, and the relative density of the as-sintered alloy was 99.8%. The rapid densification of SPS effectively inhibited the growth of the Cr2Nb phase, and the atomized powder microstructure was maintained in the grains of the alloy matrix. Uniformly distributed multi-scale Cr2Nb phases with grain sizes of 0.10?0.40 μm and 20?100 nm and fine grains of alloy matrix with an average size of 3.79 μm were obtained. After heat treatment at 500 °C for 2 h, the room temperature tensile strength, electrical conductivity, and thermal conductivity of the sintered Cu?2Cr?1Nb alloy were 332 MPa, 86.7% (IACS), and 323.1 W/(m·K), respectively, and the high temperature tensile strength (700 °C) was 76 MPa.  相似文献   

13.
Nanocrystalline tungsten has the potential to have superior strength and hardness properties versus conventional tungsten. While tungsten nanopowders are becoming more commonly available, processing through conventional press and sinter techniques induce unacceptable grain growth. As an alternative, electric-current-assisted sintering (commercially known as SPS or PPC) allows extremely high heating rates (>1,000°C/min.) to be achieved which accelerates the consolidation process and preserves the nanocrystalline structure of the material. The high heating rates can, however, lead to non-uniform density and compromised properties. This work employs numerical simulations of the process as a means to understand and reduce these gradients and optimize the process.  相似文献   

14.
The aim of present work is to study the effect of VC and/or Cr3C2 in densification, microstructural development and mechanical behavior of nanocrystalline WC-12wt.%Co powders when they are sintered by spark plasma sintering (SPS) and hot isostatic pressing (HIP). The results were compared to those corresponding to conventional sintering in vacuum. The density, microstructure, X-ray diffraction, hardness and fracture toughness of the sintered materials were evaluated. Materials prepared by SPS exhibits full densification at lower temperature (1100 °C) and a shorter stay time (5 min), allowing the grain growth control. However, the effect of the inhibitors during SPS process is considerably lower than in conventional sintering. Materials prepared by HIP at 1100 °C and 30 min present full densification and a better control of microstructure in the presence of VC. The added amount of VC allows obtaining homogeneous microstructures with an average grain size of 120 nm. The hardness and fracture toughness values obtained were about 2100 HV30 and close to 10 MPa m1/2, respectively.  相似文献   

15.
Binderless tungsten carbide materials (bWCs) were fabricated by the spark plasma sintering (SPS) system. Ultrafine WC powders with adjusted oxygen contents and C/W atomic ratios were used as raw materials. Constant and pulsed direct current patterns (constant DC and pulsed DC) were chosen as the power supplies. The results indicate that for WC starting powders with either low (0.31%) or high (0.95%) oxygen contents, a relative density larger than 99.0% can be reached by pulsed DC at 1820 °C. Nevertheless, the severely oxidized WC powders cannot be well-densified by constant DC. A high degree of densification of bWCs facilitates the collaborative improvement of the toughness and hardness. The existence of W2C facilitates the improvement of the hardness at the high expense of the toughness. The existence of graphite phase is substantially detriment to the toughness. The grain coarsening facilitates the improvement of the toughness with sacrificed hardness. The related mechanism is discussed.  相似文献   

16.
The densification behavior of nanocrystalline zirconium diboride (ZrB2) powders with nickel (5 vol%) is reported by spark plasma sintering (SPS) technique. SPS experiments were performed at 1600 and 1900 °C with 65 MPa pressure and 1 min holding time. A maximum relative density around 95% was obtained after SPS processing of ZrB2 at 1900 °C while the density of ZrB2 sample sintered at 1600 °C reached 88% of the theoretical density. Hardness and fracture toughness values are 11 GPa and 4.11 MPa m1/2 for the sample sintered at 1600 °C and 13.7 GPa and 2.65 MPa m1/2 for the sample sintered at 1900 °C, respectively.  相似文献   

17.
Understanding the microstructure of W–Cu nanocomposite powder is essential for elucidating its sintering mechanism. In this study, the effect of milling time on the structural characteristics and densification behavior of W-Cu composite powders synthesized from WO3-CuO powder mixtures was investigated. The mixture of WO3 and CuO powders was ball-milled in a bead mill for 1 h and 10 h followed by reduction by heat-treating the mixture at 800 °C in H2 atmosphere with a heating rate of 2 °C/min to produce W-Cu composite powder. The microstructure analysis of the reduced powder obtained by milling for 1 h revealed the formation of W–Cu powder consisting of W nanoparticle-attached Cu microparticles. However, Cu-coated W nanocomposite powder consisting of W nanoparticles coated with a Cu layer was formed when the mixture was milled for 10 h. Cu-coated W nanopowder exhibited an excellent sinterability not only in the solid-phase sintering stage (SPS) but also in the liquid-phase sintering stage (LPS). A high relative sintered density of 96.0% was obtained at 1050 °C with a full densification occurring on sintering the sample at 1100 °C. The 1 h-milled W-Cu powder exhibited a high sinterability only in the LPS stage to achieve a nearly full densification at 1200 °C.  相似文献   

18.
本文采用放电等离子体烧结技术制备了ZnO陶瓷,主要研究了液相(醋酸溶液)的添加对烧结过程的影响。结果表明,通过对初始粉料添加微量的2 mol/L的醋酸溶液,在等离子体烧结过程中,ZnO陶瓷试样在52 oC开始收缩,115 oC开始致密化,160 oC致密度可达95%以上,200 oC度即可完成致密化。在250 ℃烧结5 min后,晶粒尺寸从初始粉体的200 nm增长到600 nm。X衍射结果表明,在液相辅助等离子烧结过程中,ZnO陶瓷中未出现明显杂相,并且晶粒生长表现出沿外施压力垂直的方向取向生长。通过计算发现液相辅助等离子体烧结ZnO陶瓷,其晶粒生长活化能仅为78.8 kJ/mol,约为传统高温烧结的三分之一。ZnO陶瓷试样的室温阻抗结果表明,晶界阻抗随烧结温度的升高而下降,从120 oC烧结试样的9.82×106 W下降到250 oC烧结试样的2.75×103 W。  相似文献   

19.
In this research, binary 4TaC–HfC based composites were consolidated using carbide materials and addition of 0–15 vol.% MoSi2 by means of spark plasma sintering at 2000 °C. The nearly full dense and monophase specimens were fabricated with a relative density value higher than 99%. Mechanical tests revealed values of 18–19 GPa and 4–4.3 MPa·m1/2, for average Vickers hardness and fracture toughness of the composites, respectively. Analysis of linear shrinkage during densification revealed that MoSi2 addition increased densification rate and decreased the time required to reach full density at 2000 °C. It is proposed that at the intermediate stage of sintering, mass transfer can be accelerated by formation of a silicide based liquid phase and viscous flow mechanisms. The formation of binary 4TaC–HfC solid solution phase enhanced the densification process at the final stage of sintering.  相似文献   

20.
Spark plasma sintering (SPS) is a new technique to rapidly produce metal matrix composites (MMCs), but there is little work on the production of TiB2–TiC reinforced steel matrix composites by SPS. In this work, in situ TiB2–TiC particulates reinforced steel matrix composites have been successfully produced using cheap ferrotitanium and boron carbide powders by SPS technique. The effect of sintering process on the densification, hardness and phase evolution of the composite is investigated. The results show that when the composite is sintered at 1050 °C for 5 min, the maximum densification and hardness are 99.2% and 83.8 HRA, respectively. The phase evolution of the composite during sintering indicates that the in situ TiB2–TiC reinforcements are formed by a hybrid formation mechanism containing solid–solid diffusion reaction and solid–liquid solution-precipitation reaction. The microstructure investigation reveals that fine TiB2–TiC particulates with a size of ~2 μm are homogeneously distributed in the steel matrix. The TiB2–TiC/Fe composites possess excellent wear resistance under the condition of dry sliding with heavy loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号