首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
An understanding of the mechanisms of virologic cross-resistance between human immunodeficiency virus type 1 protease inhibitors is important for the establishment of effective treatment strategies for patients who no longer respond to their initial protease inhibitor. Protease gene sequencing results from patients treated with saquinavir showed significant increases in the frequency of the G48V protease mutation in patients receiving higher doses of the drug. In addition, all six patients who developed the G48V mutation during saquinavir therapy developed the V82A mutation either on continued saquinavir or after a switch to nelfinavir or indinavir. In vitro susceptibility assays showed that all 13 isolates with reduced susceptibilities to two or more protease inhibitors had either the G48V or L90M mutation, along with an average of six other protease mutations. Reduced susceptibility to nelfinavir was found in 14 isolates, but only 1 possessed the D30N mutation. These results suggest that mutations selected in vivo by initial saquinavir therapy may provide more cross-resistance to the other protease inhibitors than has been previously reported.  相似文献   

2.
Resistance of HIV-1 to protease inhibitors has been associated with changes at residues Val82 and Ile84 of HIV-1 protease (HIV PR). Using both an enzyme assay with a peptide substrate and a cell-based infectivity assay, we examined the correlation between the inhibition constants for enzyme activity (Ki values) and viral replication (IC90 values) for 5 active site mutants and 19 protease inhibitors. Four of the five mutations studied (V82F, V82A, I84V, and V82F/I84V) had been identified as conferring resistance during in vitro selection using a protease inhibitor. The mutant protease genes were expressed in Escherichia coli for preparation of enzyme, and inserted into the HXB2 strain of HIV for test of antiviral activity. The inhibitors included saquinavir, indinavir, nelfinavir, 141W94, ritonavir (all in clinical use), and 14 cyclic ureas with a constant core structure and varying P2, P2' and P3, P3' groups. The single mutations V82F and I84V caused changes with various inhibitors ranging from 0.3- to 86-fold in Ki and from 0.1- to 11-fold in IC90. Much larger changes compared to wild type were observed for the double mutation V82F/I84V both for Ki (10-2000-fold) and for IC90 (0.7-377-fold). However, there were low correlations (r2 = 0.017-0.53) between the mutant/wild-type ratio of Ki values (enzyme resistance) and the mutant/wild-type ratio of viral IC90 values (antiviral resistance) for each of the HIV proteases and the viruses containing the identical enzyme. Assessing enzyme resistance by "vitality values", which adjust the Ki values with the catalytic efficiencies (kcat/Km), caused no significant improvement in the correlation with antiviral resistance. Therefore, our data suggest that measurements of enzyme inhibition with mutant proteases may be poorly predictive of the antiviral effect in resistant viruses even when mutations are restricted to the protease gene.  相似文献   

3.
4.
We have studied the phenotypic impact of adaptative Gag cleavage site mutations in patient-derived human immunodeficiency virus type 1 (HIV-1) variants having developed resistance to the protease inhibitor ritonavir or saquinavir. We found that Gag mutations occurred in a minority of resistant viruses, regardless of the duration of the treatment and of the protease mutation profile. Gag mutations exerted only a partial corrective effect on resistance-associated loss of viral fitness. Reconstructed viruses with resistant proteases displayed multiple Gag cleavage defects, and in spite of Gag adaptation, several of these defects remained, explaining the limited corrective effect of cleavage site mutations on fitness. Our data provide clear evidence of the interplay between resistance and fitness in HIV-1 evolution in patients treated with protease inhibitors.  相似文献   

5.
One hope to maintain the benefits of antiviral therapy against the human immunodeficiency virus type 1 (HIV-1), despite the development of resistance, is the possibility that resistant variants will show decreased viral fitness. To study this possibility, HIV-1 variants showing high-level resistance (up to 1,500-fold) to the substrate analog protease inhibitors BILA 1906 BS and BILA 2185 BS have been characterized. Active-site mutations V32I and I84V/A were consistently observed in the protease of highly resistant viruses, along with up to six other mutations. In vitro studies with recombinant mutant proteases demonstrated that these mutations resulted in up to 10(4)-fold increases in the Ki values toward BILA 1906 BS and BILA 2185 BS and a concomitant 2,200-fold decrease in catalytic efficiency of the enzymes toward a synthetic substrate. When introduced into viral molecular clones, the protease mutations impaired polyprotein processing, consistent with a decrease in enzyme activity in virions. Despite these observations, however, most mutations had little effect on viral replication except when the active-site mutations V32I and I84V/A were coexpressed in the protease. The latter combinations not only conferred a significant growth reduction of viral clones on peripheral blood mononuclear cells but also caused the complete disappearance of mutated clones when cocultured with wild-type virus on T-cell lines. Furthermore, the double nucleotide mutation I84A rapidly reverted to I84V upon drug removal, confirming its impact on viral fitness. Therefore, high-level resistance to protease inhibitors can be associated with impaired viral fitness, suggesting that antiviral therapies with such inhibitors may maintain some clinical benefits.  相似文献   

6.
7.
OBJECTIVE: To determine the rate of virological treatment failure with protease inhibitor therapy in unselected patients and to assess underlying risk factors. DESIGN AND SETTING: Retrospective study in two German tertiary care treatment centres. PATIENTS: A total of 198 HIV-infected patients treated with protease inhibitors in 1996. MAIN OUTCOME MEASURES: Levels of HIV RNA 1-6 months after start of treatment; definition of treatment failure of < 1 log10 reduction in plasma HIV RNA within 6 months after starting protease inhibitor therapy; multivariate analysis of risk factors for treatment failures. RESULTS: A total of 226 treatment episodes with protease inhibitors were evaluable (saquinavir, 83; ritonavir, 47; indinavir, 96). The rate of virological treatment failure was 44% (saquinavir, 64%; ritonavir, 38%; indinavir, 30%). In a multivariate analysis, the following independent risk factors for virological failure were found: CD4 cell count, pretreatment with antiretroviral drugs (number), and protease inhibitor (compound). The relative risk reduction for each CD4 cell count increase was 0.997 (P = 0.012), 2.64 for pretreatment with one or two drugs versus no drug (P = 0.05), 2.97 for pretreatment with more than two drugs versus no drug (P = 0.05), and 4.62 for treatment with saquinavir versus indinavir (P = 0.001). CONCLUSION: An unexpectedly high rate of virological treatment failure of protease inhibitor therapy was found in an unselected cohort of HIV-infected patients. Response to antiretroviral combination therapy in normal clinical practice may considerably differ from results of randomized clinical trials. Further studies are warranted to find optimal treatment strategies for both initial and salvage therapy.  相似文献   

8.
In this review the clinical pharmacology of HIV protease inhibitors, a new class of antiretroviral drugs, is discussed. After considering HIV protease function and structure, the development of inhibitors of HIV protease is presented. Three protease inhibitors are reviewed in more detail: saquinavir, indinavir, and ritonavir. Clinical trial results with these agents are evaluated. Furthermore, adverse effects, resistance, dosage and administration, clinical pharmacokinetics, pharmacokinetic-pharmacodynamic relationships, and drug interactions are discussed.  相似文献   

9.
Nelfinavir mesylate (formerly AG1343) is a potent and selective inhibitor of human immunodeficiency virus (HIV) protease approved for the treatment of individuals infected with HIV. Nucleotide sequence analysis of protease genes from plasma HIV type 1 (HIV-1) RNA revealed a unique aspartic acid (D)-to-asparagine (N) substitution at residue 30 (D30N) in 25 of 55 patients treated with nelfinavir for a median of 13 weeks. Although the appearance of D30N was occasionally associated with concurrent or sequential emergence of other changes (e.g., at residues 35, 36, 46, 71, 77, and 88), genotypic changes associated with phenotypic resistance to other protease inhibitors were not observed (e.g., at residues 48, 50, 82, and 84) or were only rarely observed (e.g., at residue 90). In phenotypic assays, viral isolates with high-level resistance to nelfinavir remained susceptible to indinavir, saquinavir, ritonavir, and amprenavir (formerly VX-478/141W94). Similar results were observed in phenotypic assays utilizing HIV-1 NL4-3, which contained the D30N substitution alone or in combination with substitutions at other residues (e.g., residues 46, 71, and 88). These data indicate that the initial pathway of resistance to nelfinavir is unique and suggest that individuals failing short courses of nelfinavir-containing regimens may respond to regimens containing other protease inhibitors.  相似文献   

10.
11.
Human immunodeficiency virus type 1 (HIV-1) variants that have developed protease (PR) inhibitor resistance most often display cross-resistance to several molecules within this class of antiretroviral agents. The clinical benefit of the switch to a second PR inhibitor in the presence of such resistant viruses may be questionable. We have examined the evolution of HIV-1 PR genotypes and phenotypes in individuals having failed sequential treatment with two distinct PR inhibitors: saquinavir (SQV) followed by indinavir (IDV). In viruses where typical SQV resistance mutations were detected before the change to IDV, the corresponding mutations were maintained under IDV, while few additional mutations emerged. In viruses where no SQV resistance mutations were detected before the switch to IDV, typical SQV resistance profiles emerged following the introduction of IDV. We conclude that following suboptimal exposure to a first PR inhibitor, the introduction of a second molecule of this class can lead to rapid selection of cross-resistant virus variants that may not be detectable by current genotyping methods at the time of the inhibitor switch. Viruses committed to resistance to the first inhibitor appear to bear the "imprint" of this initial selection and can further adapt to the selective pressure exerted by the second inhibitor following a pathway that preserves most of the initially selected mutations.  相似文献   

12.
13.
Analysis of mutational effects in the human immunodeficiency virus type-1 (HIV-1) provirus has revealed that as few as four amino acid side-chain substitutions in the HIV-1 protease (M46I/L63P/V82T/I84V) suffice to yield viral variants cross-resistant to a panel of protease inhibitors either in or being considered for clinical trials (Condra, J. H., Schleif, W. A., Blahy, O. M., Gadryelski, L. J., Graham, D. J., Quintero, J. C., Rhodes, A., Robbins, H. L., Roth, E., Shivaprakash, M., Titus, D., Yang, T., Teppler, H., Squires, K. E., Deutsch, P. J., and Emini, E. A. (1995) Nature 374, 569-571). As an initial effort toward elucidation of the molecular mechanism of drug resistance in AIDS therapies, the three-dimensional structure of the HIV-1 protease mutant containing the four substitutions has been determined to 2.4-A resolution with an R factor of 17.1%. The structure of its complex with MK639, a protease inhibitor of the hydroxyaminopentane amide class of peptidomimetics currently in Phase III clinical trials, has been resolved at 2.0 A with an R factor of 17.0%. These structures are compared with those of the wild-type enzyme and its complex with MK639 (Chen, Z., Li, Y., Chen, E., Hall, D. L., Darke, P. L., Culberson, C., Shafer, J., and Kuo, L. C. (1994) J. Biol. Chem. 269, 26344-26348). There is no gross structural alteration of the protease due to the site-specific mutations. The C alpha tracings of the two native structures are identical with a root-mean-square deviation of 0.5 A, and the four substituted side chains are clearly revealed in the electron density map. In the MK639-bound form, the V82T substitution introduces an unfavorable hydrophilic moiety for binding in the active site and the I84V substitution creates a cavity (unoccupied by water) that should lead to a decrease in van der Waals contacts with the inhibitor. These changes are consistent with the observed 70-fold increase in the Ki value (approximately 2.5 kcal/mol) for MK639 as a result of the mutations in the HIV-1 protease. The role of the M46I and L63P substitutions in drug resistance is not obvious from the crystallographic data, but they induce conformational perturbations (0.9-1.1 A) in the flap domain of the native enzyme and may affect the stability and/or activity of the enzyme unrelated directly to binding.  相似文献   

14.
Amprenavir (141W94, VX-478, KVX-478) is metabolized primarily by CYP3A4 (cytochrome P450 3A4) in recombinant systems and human liver microsomes (HLM). The effects of ketoconazole, terfenadine, astemizole, rifampicin, methadone, and rifabutin upon amprenavir metabolism were examined in vitro using HLM. Ketoconazole, terfenadine, and astemizole were observed to inhibit amprenavir depletion, consistent with their known specificity for CYP3A4. The HIV protease inhibitors, indinavir, saquinavir, ritonavir, and nelfinavir, were included in incubations containing amprenavir to examine the interactions of HIV protease inhibitors in vitro. The order of amprenavir metabolism inhibition in human liver microsomes was observed to be: ritonavir > indinavir > nelfinavir > saquinavir. The Ki value for amprenavir-mediated inhibition of testosterone hydroxylation in human liver microsomes was found to be approximately 0.5 microM. Studies suggest that amprenavir inhibits CYP3A4 to a greater extent than saquinavir, and to a much lesser extent than ritonavir. Amprenavir, nelfinavir, and indinavir appear to inhibit CYP3A4 to a moderate extent, suggesting a selected number of coadministration restrictions.  相似文献   

15.
The protease inhibitors, ritonavir, indinavir and saquinavir, the most potent anti-HIV drugs developed to date, interact with many drugs by competing for CYP3A4, an enzyme central to the metabolism of a wide variety of compounds. Human liver microsomes were used to compare inhibition by these three protease inhibitors. The inhibition was the greatest with ritonavir and indinavir and less potent with saquinavir.  相似文献   

16.
17.
Pharmacokinetic drug interactions with viral protease inhibitors are of potential clinical importance. An in vitro model was applied to the quantitative identification of possible interactions of protease inhibitors with substrates of cytochrome P450-2D6. Biotransformation of desipramine (DMI) to hydroxydesipramine (OH-DMI), an index reaction used to profile activity of human cytochrome P450-2D6, was studied in vitro using human liver microsomes. Quinidine and four viral protease inhibitors currently used to treat human immunodeficiency virus infection were tested as chemical inhibitors in this system. Formation of OH-DMI from DMI was consistent with Michaelis-Menten kinetics, having a mean Km value of 11.7 microM (range: 9.9-15.3 microM). Quinidine, a highly potent and relatively selective inhibitor of P450-2D6, strongly inhibited OH-DMI formation with an apparent competitive mechanism, having a mean inhibition constant of 0.16 microM (range: 0.13-0.18 microM). All four protease inhibitors impaired OH-DMI formation; the pattern was consistent with a mixed competitive-noncompetitive mechanism. Mean inhibition constants (small numbers indicating greater inhibiting potency) were as follows: ritonavir, 4.8 microM; indinavir, 15.6 microM; saquinavir, 24.0 microM; nelfinavir, 51.9 microM. In a clinical pharmacokinetic study, coadministration of ritonavir with DMI inhibited DMI clearance by an average of 59%. The in vitro findings, together with observed plasma ritonavir concentrations, provided a reasonable quantitative forecast of this interaction, whereas estimated unbound plasma or intrahepatic ritonavir concentrations yielded poor quantitative forecasts. Thus the in vitro model correctly identifies ritonavir as a potent and clinically important inhibitor of human P450-2D6. Other protease inhibitors may also inhibit 2D6 activity in humans, but with lower potency than ritonavir.  相似文献   

18.
Coadministration with the human immunodeficiency virus (HIV) protease inhibitor ritonavir was investigated as a method for enhancing the levels of other peptidomimetic HIV protease inhibitors in plasma. In rat and human liver microsomes, ritonavir potently inhibited the cytochrome P450 (CYP)-mediated metabolism of saquinavir, indinavir, nelfinavir, and VX-478. The structural features of ritonavir responsible for CYP binding and inhibition were examined. Coadministration of other protease inhibitors with ritonavir in rats and dogs produced elevated and sustained plasma drug levels 8 to 12 h after a single dose. Drug exposure in rats was elevated by 8- to 46-fold. A > 50-fold enhancement of the concentrations of saquinavir in plasma was observed in humans following a single codose of ritonavir (600 mg) and saquinavir (200 mg). These results indicate that ritonavir can favorably alter the pharmacokinetic profiles of other protease inhibitors. Combination regimens of ritonavir and other protease inhibitors may thus play a role in the treatment of HIV infection. Because of potentially substantial drug level increases, however, such combinations require further investigation to establish safe regimens for clinical use.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号