首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Permeation enhancers for transdermal drug delivery   总被引:7,自引:0,他引:7  
The transdermal route has been recognized as one of the highly potential routes of systemic drug delivery and provides the advantage of avoidance of the first-pass effect, ease of use and withdrawal (in case of side effects), and better patient compliance. However, the major limitation of this route is the difficulty of permeation of drug through the skin. Studies have been carried out to find safe and suitable permeation enhancers to promote the percutaneous absorption of a number of drugs. The present review includes the classification of permeation enhancers and their mechanism of action; thus, it will help in the selection of a suitable enhancer(s) for improving the transdermal permeation of poorly absorbed drugs.  相似文献   

2.
Cobra skin (Naja Naja Khaotia) was used as a barrier for an in vitro permeation study using nicotine. Fluxes of nicotine that permeated from Nicotinell ® through cobra skin (CS) taken from the head, body, and tail were 233.93 ± 16.08, 206.87 ± 19.00, and 211.26 ± 22.93 μg/cm2/hr1/2, respectively (n=6). This indicated no significant difference (p >. 05). Abdominal human epidermis (HE), obtained from cadavers, and the CS provided identical permeation kinetics for nicotine, which can be described by Mt = 4Mα=(Dt π L2)1/2. The mean flux of nicotine formulated as an acrylic transdermal patch that permeated through HE was 137.92 ± 67.79 μg/cm2/hr1/2 (4 specimens, n= 12), whereas that through CS was 180.13 ± 41.05 μg/cm2/hr1/2 (4 specimens, n= 15). The ratio of the fluxes of nicotine from formulated patches having three different nicotine contents using CS and HE was 1.22 to 1, respectively, for each of the patches irrespective of nicotine content. The coefficients of variation of the nicotine permeated were 22.79% and 49.15% for CS and HE, respectively, that is, a narrower variation of results was obtained with CS. This indicated that CS could be used for nicotine permeation studies.  相似文献   

3.
Abstract

Haloperidol (HAL), an antipsychotic, is associated with side effects of drug-induced extrapyramidal syndrome (EPS) in conventional monotherapy. Controlled released transdermal dosage form (TDDS) of the drug was designed for maintenance therapy. Matrix-diffusion type transdermal film of HAL was designed with Eudragit NE 30D copolymer without permeation enhancer in different combinations. For the feasibility studies, all standard evaluations were performed, and their results pointed toward the suitability of TDDS. The drug release and permeation studies in Franz diffusion cell in 20% PEG-normal saline followed the Higuchi equation with optimum correlation coefficient. The neuroleptic efficacy was confirmed by maximum graded response in a rotarod apparatus. The neuroleptic-induced catatonia (EPS) in albino rats was minimum with a score of zero over a 72-hr study. The pharmacokinetic parameters in rabbit model showed a very significant prolongation of action up to 72 hr with steady-state plasma concentration (cpss) of 11.58 ng/mL. Thus, the HAL-loaded TDDS improved the therapeutic profile by preventing the neuroleptic-induced EPS and might be a better alternative during its long period of psychiatric treatment over conventional dosage form.  相似文献   

4.
To formulate a transdermal drug delivery system of captopril, monolithic adhesive matrix type patches containing 20% captopril, different pressure-sensitive adhesives, and various permeation enhancers were prepared using a labcoater. The effects of the adhesives and permeation enhancers on skin permeation of captopril from the prepared patches were evaluated using Franz diffusion cells fitted with excised rat skins. The permeation rate of the drug through the excised skin was dependent on the type of polyacrylate copolymers studied. Fatty alcohols resulted in a pronounced enhancing effect on the skin permeation of captopril, while dimethyl sulfoxide,N-methyl-2-pyrrolidone, oleic acid, Transcutol, and polysorbate 20 showed no significant enhancing effect. The permeation-enhancing effect of the fatty alcohols reached the maximum at the level of 10%. Based on these results, a captopril patch may be developed with further optimization.  相似文献   

5.
The purpose of this research was to develop a matrix-type transdermal therapeutic system containing herbal drug, curcumin (CUR), with different ratios of hydrophilic (hydroxyl propyl methyl cellulose K4M [HPMC K4M]) and hydrophobic (ethyl cellulose [EC]) polymeric systems by the solvent evaporation technique. Different concentrations of oleic acid (OA) were used to enhance the transdermal permeation of CUR. The physicochemical compatibility of the drug and the polymers was also studied by differential scanning calorimetry (DSC) and infrared (IR) spectroscopy. The results suggested no physicochemical incompatibility between the drug and the polymers. Formulated transdermal films were physically evaluated with regard to drug content, tensile strength, folding endurance, thickness, and weight variation. All prepared formulations indicated good physical stability. In vitro permeation studies of formulations were performed by using Franz diffusion cells. The results followed Higuchi kinetics, and the mechanism of release was diffusion-mediated. Formulation prepared with hydrophilic polymer containing permeation enhancer showed best in vitro skin permeation through rat skin as compared with all other formulations. This formulation demonstrated good anti-inflammatory activity against carrageenan-induced oedema in Wistar albino rats similar to standard formulation.  相似文献   

6.
A soft hydrogel formulation for the transdermal delivery of testosterone (TS) was developed, and the effect of various skin-permeation enhancers was studied in vitro and in vivo. Testosterone was incorporated into a polyvinyl alcohol (PVA)-based soft hydrogel with polyisobutylene (PIB) and various skin-permeation enhancers (dodecylamine, HPE101, oleic acid, or lauric acid). In vitro rat-skin permeation of TS from the soft hydrogel was investigated using Keshary-Chien diffusion cells for 24 hr at 37°C. In vivo plasma-concentration profiles of TS after applying the soft hydrogel on the dorsal skin of rat were determined using a commercial radioimmunoassay kit. The formulated soft hydrogel formed a thin film on the skin within 2 to 3 min after application and remained in a dried-film state for at least 24 hr. Addition of PIB into the hydrogel to increase the adhesion resulted in a negligible reduction in the skin-permeation rate of TS. However, rat-skin permeation of TS increased with the addition of permeation enhancers both in vitro and in vivo. Dodecylamine at the concentration of 3% was the most effective among tested. Plasma concentration of TS significantly increased for at least 24 hr with the addition of dodecylamine. These results suggest the feasibility of the development of a soft hydrogel formulation for the transdermal delivery of TS.  相似文献   

7.
ABSTRACT

Matrix-type transdermal delivery systems of testosterone (TS) were formulated with three different pressure-sensitive adhesives (PSA). The effects of PSA, skin permeation enhancers, and solubilizers on the rat skin permeation rate of TS were systematically investigated. Without a solubilizer, the skin permeation rate of TS reached its maximum value when only 2% of TS was loaded in the matrix and the crystal formation in the matrix was very rapid and severe. Two surfactants differing in their hydrophile–lipophile balance (HLB) number were, therefore, considered. Span 80, which was of the lower HLB number, was more effective than Tween 80 in increasing the solubility, and thereby increasing the permeation rate of TS. Moreover, the concentrations of both the solubilizer and the skin permeation enhancer affected the skin permeation rate. Thus, the highest skin permeation rate (4.14 µg/cm2/hr) was achieved when 2% TS was loaded in DuroTak® 87-2516 together with 10% Span 80 and 3% dodecylamine, the permeation enhancer. In vivo study showed that the application of an experimental patch on rat abdominal skin resulted in a prompt and significantly higher plasma concentration of TS than that of a commercial product (Testoderm®) designed to apply on the scrotal skin. The area under the curve (AUC) increased linearly as the loading dose of TS increased up to 6%. Thus, based on these results, a non-scrotal matrix-type transdermal delivery system of TS could be developed.  相似文献   

8.
ABSTRACT

In the development of bioadhesive patch devices for percutaneous local anesthesia, the tensile properties of the films produced after the casting of the gel intermediates is of key importance to the clinical compliance of the product, and its effective delivery of the local anesthetic agent. A range of bioadhesive patches were formulated and their mechanical and in vitro permeation properties determined. Altering formulation significantly altered the mechanical properties of films. The tensile properties of the films could be modified to allow concomitant benefits in the mechanical and drug permeation properties of the films, ensuring that patches not only exerted clinically beneficial effects, but are also mechanically robust. Tetracaine was found to plasticize films and while this effect was weak, it was significant both statistically and potentially also in the effect it has on the clinical use of these devices. Drug release from tetracaine patches demonstrate the same trends as found previously across polydimethylsiloxane films. By altering the formulation of the patch device, the drug release from the device to the skin is readily and accurately controlled, and was not solely a function of the stratum corneum barrier properties but additionally of the formulation.  相似文献   

9.
Book Review     
Triboelectrification affects particle adhesion and agglomeration and hence the formulation, manufacture, and use of dry powder inhaler (DPI) devices. Electrostatic charge measurement of two component mixes of spray-dried or crystalline lactose fine particles (<10 μm) 0, 5, 10, 15, 20, and 30% w/w with spray-dried or crystalline lactose 63–90 μm, respectively, has been undertaken using a system incorporating pneumatic transport of the mixed powders to a stainless steel cyclone charging device. The magnitude of charge on the mixes was shown to decrease with increased fine particle content, and there was no significant difference in charge for each concentration between spray-dried and crystalline lactose. Both the variation of charge and powder adhesion to the cyclone surface increased with increase in fine particle content. The proportion of fine particles in carrier systems in DPIs may thus have an important role where triboelectrification is involved.  相似文献   

10.
ABSTRACT

The partial phase behavior, rheological, and drug release characteristics of an organogel (OG) composed of water, isooctane and sorbitan esters, sorbitan monopalmitate (Span-40) and poly(oxyethylene)sorbitan monostearate (Polysorbate-60) were studied. Phase diagrams showed decreasing areas of optically isotropic organogel region depending on the surfactant ratio, Kw and drug incorporation. The nonbirefringent, clear isotropic solution suggested the reverse micellar/microemulsion nature of the organogel without any molecular ordering. The increase in drug concentration in OGs leads to increase in the viscosity and sol-gel transition temperature (Tg). Fractal dimension (df) values calculated for different compositions suggested that the density of the tubular network increases with increasing drug concentration in OGs. The release rate of the drug from OGs was found to be non-Fickian through the dialysis membrane. The permeation rate of sumatriptan from pig skin was 0.231 mg/h/cm2 (781.9 nmol/h/cm2). The study indicates potential of OG as a reservoir system for transdermal drug delivery.  相似文献   

11.
The transdermal in vitro permeation behavior of the highly potent dopamine agonist Proterguride was investigated using hairless mouse skin as a model membrane. Drug in adhesive matrix formulations based on different types of pressure-sensitive adhesives (Eudragit® E 100 and Gelva®7883 as acrylates, Oppanol® B 15 SFN as polyisobutylene, and BioPSA® 7-4202 as silicone) with a drug load of 3% by weight were manufactured. All patches were examined for drug crystallization by polarized microscopy immediately after the manufacturing process and after storage for 30 days in sealed aluminium laminate bags at ambient temperature and at 40°C, respectively. Furthermore, the influence of the drug load in acrylate-based formulations onto the steady-state flux of Proterguride was examined. The Eudragit® E 100 system delivered a significantly higher steady-state flux than the systems based on Oppanol® B 15 SFN and also a somewhat higher steady-state flux than the Gelva®-based patch. An addition of 10% by weight of the crystallization inhibitor povidone 25 did not significantly influence the steady-state flux of Proterguride from acrylate matrices. The lipophilic silicone and polyisobutylene adhesives facilitated drug crystallization within the short storage periods at both conditions, probably due to the absence of povidone 25, which was incompatible with these polymers. Varying the drug load in acrylate-based formulations led to a linear increase of the steady-state flux until the steady-state flux of Proterguride leveled off and the patches tended to drug crystallization. It was found that Gelva®-based patches show good physical stability, good skin adhesion, and moderate flux values and, thus, can be evaluated as a basis for a suitable formulation for the transdermal administration of Proterguride.  相似文献   

12.
Use of Chemical Enhancers for Nasal Drug Delivery   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
Hong  Xiaoyun  Wu  Zaozhan  Chen  Lizhu  Wu  Fei  Wei  Liangming  Yuan  Weien 《纳微快报(英文)》2014,6(3):191-199
Nano-Micro Letters - Stratum corneum is the main obstacle for drugs to pass through the skin. Microneedles are composed of arrays of micro-projections formed with different materials, generally...  相似文献   

15.
ABSTRACT

Four fatty acid diesters (diethyl succinate, diethyl adipate, diethyl sebacate, and diisopropyl adipate) were used to study their enhancement effect on the permeation of four non-steroidal anti-inflammatory drugs (NSAIDs: ketoprofen, indomethacin, diclofenac sodium, and ibuprofen) through rat abdominal skin. With the diester pretreatment, drug permeation increased and the lag times decreased. No relationship was observed between the solubilities of the drugs in the diesters and the diester enhancement effects. The enhancement effect decreased with an increase of the drug lipophilicity, but increased with an increase of the lipophilic index of the diester up to about 3.5, after which the enhancement effect decreased or remained constant. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was employed to investigate the biophysical changes in the stratum corneum lipids caused by the diesters. The FTIR results showed that treatment of the skin with diesters did not produce a blue shift in the asymmetric and symmetric C–H stretching peak positions. However, all of the above diesters showed a decrease in peak heights and areas for both asymmetric and symmetric C–H stretching absorbances in comparison with water treatment.

These results suggested that the diesters were more effective for enhancing the penetration of hydrophilic drugs than lipophilic drugs, and the enhancing effect of lipophilic diesters was more effective than that of hydrophilic diesters. The enhancement effects of diesters may be due to their causing lipid extraction in the skin.  相似文献   

16.
Ambroxol is an expectoration improver and mucolytic agent that has been used to treat acute and chronic disorders. However, ambroxol needs to be administered percutaneously in order to avoid systemic adverse effects, such as headache, drowsiness, dizziness, and insomnia, which can occur after oral administration. The aim of this study was to develop a gel preparation containing a permeation enhancer to enhance the delivery of ambroxol. The ambroxol gels were prepared using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The release characteristics of the drug from the gels were examined according to the receptor medium, drug concentration, and temperature. The rate of drug permeation into the skin was enhanced by incorporating various enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants, and the fatty acids into the gels. The permeation study through mouse skin was examined at 37?C. The rate of drug release increased with increasing drug concentration and temperature. Among the enhancers used, propylene glycol mono caprylate showed the best enhancing effects. The estimated activation energy of release (Ea), which was calculated from the slope of a log P versus 1000/T plot, was 14.80, 14.22, 13.91, and 12.46 kcal/mol for ambroxol loading doses of 2, 3, 4, and 5%, respectively. The results of this study show that the gel preparation of ambroxol containing a permeation enhancer could be developed for the enhanced transdermal delivery of ambroxol.  相似文献   

17.
ABSTRACT

A new drug-in-adhesive transdermal patch was developed to deliver both estradiol and levonorgestrel through the skin over a 7-day period, but at different rates. This report elucidates the in vitro and in vivo biopharmaceutical studies that were necessary during the development of this product. Three test patches had to be manufactured, all delivering estradiol at the same rate, but delivering levonorgestrel at three different rates so that a levonorgestrel dose response could be studied in the clinic. An in vitro hairless mouse skin model (HMS) using modified Franz diffusion cells was used to select the test products delivering levonorgestrel in the order of 1:2:3. HMS experiments also demonstrated that the presence of estradiol did not affect the flux of levonorgestrel. Two in vivo studies in postmenopausal women showed that at steady state (four weeks of once-weekly dosing) the three test products all delivered estradiol at comparable rates. Similarly, the levonorgestrel deliveries for the three test products were in the order expected. The target fluxes of both drugs were achieved in these three test products by varying the drug loads and patch size. That this approach was successful is evidence of the value of using the HMS penetration experiments in transdermal product development and should provide useful insights for other formulations having to develop complex systems. One of the test products is now marketed as Climara ProTM.  相似文献   

18.
Percutaneous absorption-enhancing effects on the skin of hairless mice of 11 monoterpenes [1, (+)-limonene; 2, (?)-menthone; 3, (+)-terpinen-4-ol; 4, α-terpineol; 5, 1,8-cineole; 6, (+)-carvone; 7, (?)-verbenone; 8, (?)-fenchone; 9, p-cymene; 10, (+)-neomenthol; and 11, geraniol] were investigated using three different model drugs (caffeine, hydrocortisone, triamcinolone acetonide [TA]) with varying lipophilicities. Terpenes were applied at 0.4 M in propylene glycol (PG) to mouse skin. The model drugs were applied as suspensions in PG 1 hr following enhancer pretreatment. The combination of terpenes in PG provided significant enhancement of the permeation of caffeine through mouse skin. The most active compounds 10 and 11 increased permeation by between 13-fold and 16-fold. The terpenes also enhanced the delivery of hydrocortisone, but not to as great an extent. The most active compounds 3 and 4 increased permeation between 3.9-fold and 5-fold. The compounds examined did not significantly increase the delivery of TA. The most active compound 4 only increased delivery 2.5-fold, while the next most active compound 6 only increased delivery 1.7-fold. Overall, these results indicate that the combination of terpenes with PG can significantly increase the transdermal penetration of the hydrophilic drug caffeine and the polar steroid hydrocortisone.  相似文献   

19.
ABSTRACT

The purpose of this study was to investigate the effects of various pressure- sensitive adhesives (PSA) on the percutaneous absorption of physostigmine across hairless mouse skin. In addition, the influences of various vehicles and polyvinylpyrrolidone (PVP) on the percutaneous absorption of physostigmine from PSA matrix across hairless mouse skin were evaluated using a flow-through diffusion cell system at 37°C. Physostigmine showed the highest permeability from silicone adhesive matrix, followed by polyisobutylene (PIB), styrene– isoprene–styrene (SIS), acrylic, and styrene–butadiene–styrene (SBS) matrix. Among acrylic adhesives, the permeability of physostigmine was the highest from grafted acrylic adhesive. Polyvinyl pyrrolidone inhibited the crystallization of physostigmine in the PIB adhesive matrix and enhanced the permeability of physostigmine from the PIB adhesive matrix. When esters of sorbitol and fatty acid, polyethylene glycol (PEG) alkyl esters, and caprylic/capric triglycerides were tested, the more lipophilic was a surfactant, the higher the permeation rate within the same group of surfactants. The enhancement effect of PEG derivatives was lower than that of non-PEG derivatives. Among non-linear fatty acid derivatives, linoleate derivatives showed higher permeability of physostigmine than oleate derivatives. This study showed that several non-ionic surfactants, including PEG-20 evening primrose glyceride, enhanced the permeation of physostigmine across hairless mouse skin better than oleic acid.  相似文献   

20.
In vitro iontophoretic delivery of nefopam hydrochloride was conducted to study the effects initial drug concentration, pH, ionic strength and viscosity of the donor solutions on the transdermal flux through a hairless mouse skin. Stability of nefopam hydrochloride under the experimental conditions was investigated. Type of electrode, current intensity, electric voltage and electrode distance were evaluated. Appropriate conditions were selected to minimize the potential degradation problems of nefopam hydrochloride during iontophoresis. Results show that the silver/silver chloride electrode provides better drug stability than the platinum electrode. Higher current intensity resulted in faster transdermal flux and therefore better drug permeability. The increase in the drug permeability appears to be proportionally increased as the current intensity increases in the range of 0.253 to 1.265 mA/cm2. The iontophoretic transdermal delivery of nefopam hydrochloride was observed to increase as the drug concentration in the donor site was increased until it's close to the equilibrium concentration. The optimum pH to achieve the best iontophoresis under constant current was determined to be at pH 3.0. This may be due to the highest available charge density of nefopam was achieved at this pH to provide the best conductance. A decrease in the iontophoretic transdermal flux was encountered as an increase in the solution ionic strength due to the increased competition of similar charged ions with the available current. The increase in the donor solution viscosity decreased the conductivity of the ions and hindered the trandermal flux of the drug under iontophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号