首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olive-mill cake is one of the most widespread biomaterials for bioenergy exploitation in Greece. It is a sludge-type material, produced as byproduct from olive-mill extraction process. Its energy content is higher than 15 MJ/kg db and it can be used for direct burning, after drying. The drying process of olive cake is examined in the present paper. Drying kinetics data as well as the related thermophysical properties are obtained experimentally. The appropriate dryer model is proposed, validated and used to design an industrial rotary dryer. Economic analysis of the process is also discussed. A characteristic case study of an industrial rotary dryer for olive cake is included to illustrate the effectiveness of the proposed approach.  相似文献   

2.
The drying kinetics of olive cake, the solid by-product of the olive oil extraction process, has been experimentally investigated in a small-scale tray dryer using both constant and intermittent (on/off) heating schemes. The parameters investigated include inlet air temperature and intermittency of heat input. The drying kinetics was interpreted through two mathematical models, the Page equation and the Lewis equation. The Page equation was most appropriate in describing the drying behavior of olive cake. A diffusion model was used to describe the moisture transfer and the effective diffusion coefficient at each temperature was determined. The dependence of the effective diffusion coefficient on drying temperature can be adequately explained based on an Arrhenius-type relation. The effective diffusion coefficient varied between 7.6 × 10?8 and 2.5 × 10?7 m2/min with an activation energy of 38.55 kJ/mol. Comparison of time evolution of material moisture content due to intermittent and constant drying is also made.  相似文献   

3.
ABSTRACT

An investigation of the thermal drying of lignite has been carried out, by using an indirect heat pilot rotary drum. The process aims at the production of dry lignite and clean steam as part of a gasification procedure. Both flighted and bare drum modes have been employed. Temperature profiles along the dryer length, the amount of evaporation (moisture conversion) and the solids residence time distribution (RTD) were measured. A non-isothermal model was tested under three different regimes of solids flow. Model integration, by taking account of experimental amount of evaporation at dryer exit and temperature profiles along the dryer length, has been utilized in the validation of drying kinetics and heat transfer correlations. Model predictions compare satisfactorily with the operating data of an indirect heat industrial lignite dryer. Overall heat transfer coefficients of the pilot rotary dryer were found to agree well with those reported for direct heat dryers.  相似文献   

4.
ABSTRACT

The effectiveness of the rotary drum drying process depends primarily on the contact between the cascading particles and the drying gases within the drum. This paper considers first the factors which contribute to the cascade pattern and which influence the design of the lifting flights which distribute the particles in the top half of the drum. A generalised calculation design procedure for flights is developed and described in detail for the case of Equal Horizontal Distribution (EHD) flights. It is reasoned that the EHD flights, which have an equal distribution of particles across the horizontal diameter of the rotary drum dryer, give the optimum distribution in the context of the heat and mass transfer operations of the rotary drying process. An industrial design which approximates the optimum flight design is suggested.  相似文献   

5.
6.
ABSTRACT

A mathematical model able to predict solid and drying gas temperature and moisture content axial profiles along a direct contact rotary dryer was developed. The study was focused on the drying kinetics based on phenomenological models. Two different drying mechanisms in the decreasing drying rate period were tested: proponional to the unbound moisture content and moisture diffusion inside the particle. Experimental data collected in a pilot-scale direct contact rotary dryer was used to validate the model. Soya and fish meals were used as drying material.  相似文献   

7.
ABSTRACT

This study was conducted to evaluate the potential of a natural zeolite (chabazite) as the particulate medium for grain drying. The granular zeolite was heated in an electric oven and mixed with grain corn. Drying experiments were conducted in a rotary batch dryer equipped with a computer and a data acquisition and control unit simulating an adiabatic process. Five initial medium temperatures (140, 160, 180, 200, and 220 °C) were used. Drying curves for grain corn and the values of effective diffusivity are reported. The amount of moisture removed and  相似文献   

8.
介绍了河北诺达化工设备有限公司开发生产的旋转闪蒸干燥器代替回转圆筒干燥器在碳酸钡干燥过程中的应用.通过对投资、能耗、产品质量、环保效益的详细分析得出结论:用旋转闪蒸干燥器代替回转圆筒干燥器,具有节省投资,节约能耗,提高产品质量,减小环境污染等优势,为碳酸钡的干燥提供了一种新方法.该设备也适用于碳酸锶、硫酸钡、碳酸钙等滤饼类物料的干燥,同样对于冶金、化工、医药、食品等行业的滤饼类物料的干燥也具有极高的应用价值.  相似文献   

9.
Closed-loop drying systems are an attractive alternative to conventional drying systems because they provide a wide range of potential advantages. Consequently, type of drying process is attracting increased interest. Rotary drying of wood particles can be assumed as an incorporated process involving fluid–solid interactions and simultaneous heat and mass transfer within and between the particles. Understanding these mechanisms during rotary drying processes may result in determination of the optimum drying parameters and improved dryer design. In this study, due to the complexity and nonlinearity of the momentum, heat, and mass transfer equations, a computerized mathematical model of a closed-loop triple-pass concurrent rotary dryer was developed to simulate the drying behavior of poplar wood particles within the dryer drums. Wood particle moisture content and temperature, drying air temperature, and drying air humidity ratio along the drums lengths can be simulated using this model. The model presented in this work has been shown to successfully predict the steady-state behavior of a concurrent rotary dryer and can be used to analyze the effects of various drying process parameters on the performance of the closed-loop triple-pass rotary dryer to determine the optimum drying parameters. The model was also used to simulate the performance of industrial closed-loop rotary dryers under various operating conditions.  相似文献   

10.
ABSTRACT

This report reviews some fundamental and practical aspects of steam drying technologies based mainly on studies published in Japan. Steam drying kinetics, and some industrial technologies particularly for drying of foods, textiles and sludges are reviewed with focus on quality of dried material, drying time, dryer selection and energy recovery from steam dryer exhaust. For energy recovery, heat pump technologies are outlined along with characteristics of different types of steam compressors. A new process is proposed for steam drying; it combines a direct-indirect dryer followed by a direct steam dryer for internal moisture removal.  相似文献   

11.
ABSTRACT

One of the fundamental problems encountered in the batch dryer design field is the determination of appropriate equipment configuration that would ensure uniform distribution of air over the dryer trays. Such industrial batch dryer aerodynamics problems can be successfully investigated using computational fluid dynamics techniques. A mathematical model for predicting the two-dimensional air flow inside a typical industrial batch dryer equipment is developed and analyzed. The model consists of the full set of partial differential equations that describe the conservation of mass and momentum inside the dryer. The standard k-E model is used to describe turbulence in addition to the governing conservation equations. Distribution of drying air within the dryer is regulated using adjustable air blast blades in the entrance section of the drying chamber. An appropriate configuration of these flow adjusting devices is proposed so that an adequately uniform drying air distribution pattern inside the drying chamber is achieved. Finally, a characteristic design case is presented to demonstrate the effectiveness of the proposed approach.  相似文献   

12.
ABSTRACT

This work presents methods for synthesizing drying process models for particulate solids that combine prior knowledge with artificial neural networks. The inclusion of prior knowledge is investigated by developing two applications with the data from two indirect rotary steam dryers. The first application consisted in the modelling of the drying process of soya meal in a batch indirect rotary dryer, The external and internal mass transfer resistances were associated in the hidden layer of the network to linear and sigmoidal nodes, respectively. The second application consisted in the modelling of the drying process of soya meal in a continuos indirect rotary dryer. The model was constructed using the Semi-parametric Design Approach. The model predicts the evolution of solid moisture content and temperature as a function of the solid position in the dryer. The results show that the hybrid model performs better than the pure “ black box” neural network and default models. They also shows that prior knowledge enhances the extrapolation capabilities of a neural network model,  相似文献   

13.
Abstract

Spray dryers fitted with rotary atomizers are commonly used in diverse industries to produce engineered powders on a large scale. Scale-up of such units is still largely empirical and based on prior experience and know-how. In the present study, a three-dimensional spray dryer with rotary atomizer is investigated numerically with a commercial CFD code. Continuous-phase, i.e., air, conservation equations are formulated in the Eulerian model while the droplet or particle equations are set up in the Lagrangian model. Two-way coupling between the continuous and dispersed phases is taken into account in the governing equations. The stochastic approach is used to predict the particle trajectories. The RNG k ? ? turbulence model was used. Typical results, viz. air velocity, temperature, humidity profiles, and particle trajectories are presented and discussed. Compared with the pressure nozzle spray dryer, more volume of drying chamber is used effectively by the rotating disc type spray dryer. It is found that evaporation and drying take place mainly in the region and in the vicinity of first contact between air and spray. A parametric study is presented and, where appropriate, comparison is made with experimental data obtained with the simulated spray dryer.  相似文献   

14.
A computerized mathematical model was developed to predict fractional drying and aerodynamic separation of alfalfa into leaves and stems in one process in a rotary dryer. Aerodynamic separation was characterized by separation efficiency or the total amount of the desired component (leaf or stem) recovered, relative to the amount entering the process, and by purity of leaf or stem component collected at exit ports of the dryer. The model development assumed 100% separation efficiency and purity. The model was validated by comparing model predicted results with measured experimental and field test data obtained from a small industrial rotary dryer and a full-scale industrial dryer. Changes in leaf, stem, and drying gas moisture contents and temperatures were measured and predicted by the model under various drying conditions. The model-predicted results agreed well with measured data. The model was also used to simulate the performance of industrial rotary dryers under various operating conditions. The model can be used to determine the optimum drying and aerodynamic separation parameters. It can also be used to design and redesign new and existing industrial rotary dryers in order to combine drying and aerodynamic separation into one process.  相似文献   

15.
A computerized mathematical model was developed to predict fractional drying and aerodynamic separation of alfalfa into leaves and stems in one process in a rotary dryer. Aerodynamic separation was characterized by separation efficiency or the total amount of the desired component (leaf or stem) recovered, relative to the amount entering the process, and by purity of leaf or stem component collected at exit ports of the dryer. The model development assumed 100% separation efficiency and purity. The model was validated by comparing model predicted results with measured experimental and field test data obtained from a small industrial rotary dryer and a full-scale industrial dryer. Changes in leaf, stem, and drying gas moisture contents and temperatures were measured and predicted by the model under various drying conditions. The model-predicted results agreed well with measured data. The model was also used to simulate the performance of industrial rotary dryers under various operating conditions. The model can be used to determine the optimum drying and aerodynamic separation parameters. It can also be used to design and redesign new and existing industrial rotary dryers in order to combine drying and aerodynamic separation into one process.  相似文献   

16.
《Drying Technology》2013,31(5):807-848
Abstract

Grain drying is a typical heat and mass transfer process with characteristics of multivariables, long time delay and nonlinearity. Thermodynamic modeling and control have been a subject of extensive research. Fuzzy logic provides a means for converting a linguistic control strategy, based on expert knowledge, into an automatic control strategy and is suitable for such process. In this article, the thermal characteristics of the grain drying process and the key factors influencing the final moisture content of the dryer are analyzed. On the basis of the analysis, an on-line measurement and fuzzy control scheme of the grain dryer are proposed. Finally, an on-line measurement and intelligent control software is developed and put into industrial application in a grain dryer. The practical control results show that the on-line measurement and intelligent control system of the dryer product satisfying control performance.  相似文献   

17.
ABSTRACT

Drying of forestry biomass in a rotary dryer has been performed. The raw material used was Erica Arborea belonging to the ever-green, broad leaves ecosystem which covers Central Greece and other Mediterranean countries. The study was part of a project concerning a Greek biomass pyrolysis demonstration plant where drying of biomass is very important in the contribution to the global energy balance and product yields of pyrolysis.

The study includes two parts. First, the experimental part concerns the influence of air flowrate, temperature, rotation speed and inclination of a laboratory rotary dryer to biomass residence time and biomass outlet moisture content. The second part concerns the development of a mathematical model for biomass drying in a rotary dryer. Experimental measurements in a rotary dryer were compared to the data from the model, in order to check the validity of the model.  相似文献   

18.
ABSTRACT

An overall system model for a countercurrent rotary dryer has been developed with the ullimale aim of assessing controller pairings in these dryers. This model is based on heat and mass balances within dryer regions combined with two subsidiary models, one describing the equipment (which determines particle transport and heat transfer)and the other describing the behaviour of the material (the drying kinetics). Six partial differential equations have been set up to evaluate six state variables: solids moisture content, solids temperature, gas humidity, gas temperature, solids holdup and gas holdup as functions of time and rotary dryer length. A control-volume method has been used to reduce the six partial differential equations with respect to time and the length of the rotary dryer to six ordinary differential equations in time.

The drying model has been implemented in the SPEEDUP flowsheeting package (with FORTRAN subroutines) The model has been validated by fifteen experiments-in a pilot scale countercurrent-flow rotary dryer (0.2m in diameter and 2m in length)  相似文献   

19.
《Drying Technology》2013,31(4-5):729-747
ABSTRACT

This paper presents the results of theoretical and experimental studies on drying of aqueous suspensions of finely dispersed solids sprayed over the surface of an inert ceramic sphere. The effects of temperature and air velocity on kinetics of heat and mass transfer as well as peeling off the layer of a dry material from the sphere surface are described. The mathematical model of a drying process based on simplified ?gradientless? approach to transfer phenomena is proposed. The adequacy of the model developed for drying of the wet coat from a single sphere to the real drying process taking place in a bed of particulate carrier is confirmed by results of drying of several organic dyestuffs in an industrial spouted bed dryer with inert particles.  相似文献   

20.
The purpose of this research is to investigate the drying kinetics and determine the suitable drying method of prina, which is obtained after pressing of olives in olive oil factories, and which cannot be used efficiently in certain sectors. Drying experiments were performed at drying temperatures of 60°C, 70°C, and 80°C at a fixed air velocity of 2 m/s using a hot air dryer and with microwave powers of 90 W, 360 W, and 600 W using a microwave dryer. The prina layer thicknesses were selected as 7, 9, and 11 mm for both drying methods. The minimum energy consumption values were measured as 42.0 Wh for 600 W power level and 7 mm layer thickness, and 10260 Wh for 7 mm layer thickness and 80°C temperatures. It was found that energy consumption during hot air drying was more than that of microwave drying. As a result, the suitable dryer and thickness of layer were selected as microwave dryer and 7 mm, respectively. The results of statistical analyses showed that the most suitable model to define the drying behavior of prina samples were found to be the Page model for the microwave dryer and Wang &; Singh model for the hot air dryer. Also, penetration depth, the loss tangent value (tanδ), dielectric constant of material (??), and dielectric loss factor (???) of dried prina were calculated as 34.51 cm, 0.1059, 75.65, and 8.01, at 2450 MHz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号