首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The drying rates in moving bed dryers are compared. The gas and the solids to be dried are in parallel flow or counterflow. A new simplified method to simulate the drying in parallel and counterflow moving beds is developed. This model is based on the solution of arbitrary experimental or theoretical drying rate Equations of single solid particles (or thin-layer drying rate equation) coupled with heat and mass conservation Equations of the dryer. The solution is presented in an integral form of the drying equation showing the relation between time or location in the dryer and degree of drying. The method allows rapid calculation of the moisture, vapor mass fraction, and temperature distributions along the dryer in drying with moist air or steam. The model is demonstrated by using a result based on the receding front evaporation model as the specific thin-layer drying equation in the moving bed model. Wood chips are chosen as an example of the substance to be dried, but the method applies also for other medium, if the dependence of the drying rate on moisture and ambient temperature and humidity (thin layer drying rate) is known. The size of the dryer needed to reach the same degree of drying operating in the parallel mode is much greater than that of counterflow type, when the drying medium is air or flue gases. The reason for the poorer drying in parallel flow is mainly the unfavorable distribution of the evaporation temperature. In steam drying, the difference in the size is not so great, since the evaporation takes place approximately at constant temperature.  相似文献   

2.
Thin-layer drying experiments under controlled conditions were conducted for green sweet pepper in heat pump dryer at 30, 35, and 40°C and hot air dryer at 45°C with relative humidities ranging from 19 to 55%. The moisture content of sweet pepper slices reduced exponentially with drying time. As the temperature increased, the drying curve exhibited a steeper slope, thus exhibiting an increase in drying rate. Drying of green sweet pepper took place mainly under the falling-rate period. The Page equation was found to be better than the Lewis equation to describe the thin-layer drying of green sweet pepper with higher coefficient of determination and lower root mean square error. Drying in heat pump dryer at 40°C took less time with higher drying rate and specific moisture extraction rate as compared to hot air drying at 45°C due to lower relative humidity of the drying air in a heat pump dryer though the drying air temperature was less. The retention of total chlorophyll content and ascorbic acid content was observed to be more in heat pump–dried samples with higher rehydration ratios and sensory scores. The quality parameters showed a declining trend with increase in drying air temperature from 30 to 45°C. Keeping in view the energy consumption and quality attributes of dehydrated products, it is proposed to dry green sweet pepper at 35°C in heat pump dryer.  相似文献   

3.
It is inferred from experimental data that in drying foodstuffs with superheated steam, the initial drying rate has a direct effect on the rate at which the overall drying takes place. That is, the faster the initial drying rate, the shorter the overall drying time. This criterion is very convenient because at the beginning, water moistens the sample external surface so evaporation does not depend on internal sample characteristics, but only on external convective heat and mass transfer rates. Mass and energy balance equations are solved and the result converted into a general initial drying rate equation, in which all dryer characteristics are grouped into one dimensionless parameter. The initial drying rate equation is mathematically maximized and the optimum working conditions determined. The result shows that initial drying rate always increase with increases of either the superheated steam temperature or velocity, but once these two variables are fixed, there exists at least one “optimum” pressure at which the initial drying rate is a maximum. Finally, the initial drying rate and optimum condition equations are applied to three model dryers, a dryer for a flat sheet, a fixed bed dryer and a rotary dryer. In each case, numeric values are computed and plotted as drying rate versus pressure curves, in which the optimum drying rate is also included. Also presented is a chart to compare the optimum pressures as functions of temperature and steam velocity for the three dryers.  相似文献   

4.
Drying of soybean seeds in a crossflow moving bed   总被引:1,自引:0,他引:1  
The aim of this work was to investigate simultaneous heat and mass transfer between air and soybean seeds in a crossflow moving bed dryer. A model was developed from mass and energy conservation applied to the fluid and particulate phases. The equilibrium, heat transfer and mass transfer equations were taken from studies published earlier. Equations for drying kinetics were obtained from a thin layer study, and the equilibrium equation was chosen from rival model discrimination based on nonlinearity measures. The experimental part of this work involved the determination of air temperature distribution, grain moisture through the bed and air humidity at the bed outlet. The model equations were discretized by orthogonal collocation in the air flow direction. The resulting differential-algebraic equations were solved using a method based on backward differential formulas. Simulation results showed good agreement with experimental data.  相似文献   

5.
以柳树河油页岩颗粒为原料,在恒温介质干燥器内进行油页岩干燥动力学研究,考察干燥介质温度和颗粒直径对油页岩干燥性能的影响,采用薄层干燥模型中的Lewis模型,对油页岩干燥实验数据进行模拟,确定油页岩干燥方程和干燥速率方程,建立油页岩干燥常数表达式。研究结果表明:薄层干燥模型中Lewis模型能较好的描述油页岩在恒温介质干燥器内的干燥过程;其干燥过程主要发生在降速干燥阶段;200℃时油页岩无性质变化,干燥达到平衡时,油页岩含水量可降到0.5%左右,油页岩表观活化能为17~19kJ/mol。  相似文献   

6.
The performance and operating characteristics of a low temperature re-circulating cabinet dryer using a dehumidifier loop were studied using alfalfa. Chopped alfalfa, initially at 70% moisture content, was dried to 10% moisture content in the dryer. Two dryer setups were used. The dryers in each case had a partitioned cabinet with trays of material on one side and a stack of one or two small household dehumidifiers on the other side. Air was re-circulated through the material from bottom to the top and back through the dehumidifiers. Two drying configurations were tested. In one, the material was left on the trays until drying was complete (batch or fixed tray drying). In the other configuration, the trays were moved from top to bottom, introducing a new tray at the top while removing an old tray from bottom. Drying air temperature ranged from 25 to 45°C. The average air velocity through the material was 0.38 m/s. Alfalfa chops dried in 5 h in the fixed tray drying and in 4 h in the moving tray drying. The specific moisture extraction rate ranged from 0.35 to 1.02 kg/kWh for batch drying and stayed at an average value of 0.50 kg/kWh for continuous/moving tray drying.  相似文献   

7.
Corn, rice, and wheat seeds with an initial moisture content (IMC) of 20–25% wb were dried to moisture content below 18% wb at 40–80°C in a fluidized bed dryer (FBD) and spouted bed dryer (SBD) and the seeds with IMC 18% wb were dried to below 14% wb at air temperatures 18–30°C and relative humidity 60–70% by an in-store dryer (ISD). As a result, it appears that a two-stage drying concept is feasible in drying high-moisture-content seeds due to the high germination rate of dried seeds. Nonetheless, the drying temperature must be carefully selected. A drying temperature of 40°C was clearly safe for all samples, whereas more than 90% of wheat seeds still germinated after drying at 60°C in FBD. Furthermore, drying seeds with IMC 18% wb by ISD was safe under specified drying conditions.  相似文献   

8.
ABSTRACT

The paper presents new data for thin-layer drying characteristics of Thai long grain rough rice measured under various conditions of drying air temperature (35 to 60?°C), drying air relative humidity (30 to 70 % ) and the initial moisture content of rough rice (20 to 40 % dry basis). Empirical equations were developed using the instantaneous weight, the weight loss and drying time, with temperature, relative humidity and initial moisture content of rough rice as the independent variables. A computer program was developed to simulate the deep-bed drying process. The thin-layer drying equation developed before was used in the computer simulation. Experimental data from the fixed bed dryer were compared with the results from the calculation.  相似文献   

9.
《Drying Technology》2013,31(8):1673-1689
ABSTRACT

The performance and operating characteristics of a low temperature re-circulating cabinet dryer using a dehumidifier loop were studied using alfalfa. Chopped alfalfa, initially at 70% moisture content, was dried to 10% moisture content in the dryer. Two dryer setups were used. The dryers in each case had a partitioned cabinet with trays of material on one side and a stack of one or two small household dehumidifiers on the other side. Air was re-circulated through the material from bottom to the top and back through the dehumidifiers. Two drying configurations were tested. In one, the material was left on the trays until drying was complete (batch or fixed tray drying). In the other configuration, the trays were moved from top to bottom, introducing a new tray at the top while removing an old tray from bottom. Drying air temperature ranged from 25 to 45°C. The average air velocity through the material was 0.38 m/s. Alfalfa chops dried in 5 h in the fixed tray drying and in 4 h in the moving tray drying. The specific moisture extraction rate ranged from 0.35 to 1.02 kg/kWh for batch drying and stayed at an average value of 0.50 kg/kWh for continuous/moving tray drying.  相似文献   

10.
《Drying Technology》2013,31(7):1357-1368
Abstract

A thin-layer forced air solar dryer was designed to study the feasibility of drying pistachio nuts. The dryer was tested during the 2001 and 2002 drying seasons. The maximum temperature in the solar collector reached 56°C, which was 20°C above the ambient temperature. The required drying time was 36 h. During the first day of drying (0800 to 1700 h) the moisture content dropped to about 21% (wb). The final moisture content of the dried nuts was 6% wb, which was 1% below the recommended storage moisture. The drying constant of the pistachio nuts during solar drying was determined using two mathematical models, a one-term series solution of Fick's diffusion equation and an exponential decaying model. There was no significant difference between the two models (α = 0.05). In general, the quality of solar dried nuts was better than the conventional heated air due to slower drying rates.  相似文献   

11.
A modified quasi-stationary method has been proposed to describe drying kinetics of particulate materials dried in convective dryers with active hydrodynamic regimes. Both our own results and literature data were used. These include sliced celery, cranberry, diced carrot, wheat and polystyrene granules dried in four types of dryers: pulsed fluid bed dryer, fluid bed dryer with a mixer, spouted bed dryer with a draft tube, and vortex dryer. The method was validated by comparing experimental data with results of modeling in terms of a reduced moisture content and material temperature. A new form of the generalized drying curve has been proposed with the reduced time and the index of hydrodynamic intensity as parameters. The equations developed can be used to calculate the total drying time and determine the temporal variation of the moisture content and material temperature.  相似文献   

12.
A mathematical model of temperature and wheat moisture content distribution inside a triangular spouted bed dryer was developed. The model is based on analysis of heat and mass transfer inside the dryer. In addition to that, an empirical bulk density model has been developed for wheat and included in the drying simulation. A laboratory-scale triangular spouted bed (TSB) dryer was used to dry wheat grain to validate the model. The dryer was divided into three sections, namely spouting, downcomer, and fountain. A series of drying runs were conducted to record moisture and temperature profile. There were two distinct regions observed during wheat drying. A constant rate period was observed during the initial drying stage and the falling rate period took place at the later drying stage. Initial moisture content and operating drying temperature governed the timing of transition from constant rate period to falling rate period. The model can be used to accurately predict the moisture content of wheat during drying. The temperature prediction inside the TSB dryer was less accurate, especially at high temperatures due to heat losses in the experimental dryer. Further studies are needed to improve the accuracy of this model, especially with regard to the temperature prediction.  相似文献   

13.
A mathematical model of temperature and wheat moisture content distribution inside a triangular spouted bed dryer was developed. The model is based on analysis of heat and mass transfer inside the dryer. In addition to that, an empirical bulk density model has been developed for wheat and included in the drying simulation. A laboratory-scale triangular spouted bed (TSB) dryer was used to dry wheat grain to validate the model. The dryer was divided into three sections, namely spouting, downcomer, and fountain. A series of drying runs were conducted to record moisture and temperature profile. There were two distinct regions observed during wheat drying. A constant rate period was observed during the initial drying stage and the falling rate period took place at the later drying stage. Initial moisture content and operating drying temperature governed the timing of transition from constant rate period to falling rate period. The model can be used to accurately predict the moisture content of wheat during drying. The temperature prediction inside the TSB dryer was less accurate, especially at high temperatures due to heat losses in the experimental dryer. Further studies are needed to improve the accuracy of this model, especially with regard to the temperature prediction.  相似文献   

14.
基于气固流态化原理的油页岩干燥动力学   总被引:2,自引:1,他引:1  
为了考察气固流化床干燥器能否使油页岩含水质量分数达到要求,以柳树河油页岩颗粒为原料,研究进口气体温度和颗粒直径对油页岩干燥性能的影响,采用薄层干燥模型,对油页岩干燥实验数据进行模拟,确定油页岩干燥方程和干燥速率方程,建立油页岩干燥速率特征常数和有效扩散系数之间的关联式。研究结果表明:薄层干燥模型中修正Page模型Ⅰ适合描述油页岩的干燥过程;油页岩在流化床内干燥过程主要发生在降速干燥阶段,进口气体温度越高,油页岩颗粒直径越小,所需干燥时间越短,进口气体温度为350℃时,使2.4 mm油页岩含水质量分数低于5%,所需干燥时间为2.5 min。  相似文献   

15.
An innovative two-stage drying concept is presented in this article. The work considered drying of shrimp using a superheated steam dryer followed by a heat pump (SSD/HPD) or a hot air dryer (SSD/AD) both from drying kinetics and dried product quality points of view. The experiments were performed using the first-stage superheated steam drying temperature of 140°C while the second-stage heat pump drying (or hot air drying) was performed at 50°C. The moisture content of shrimp at the end of the superheated steam drying stage was varied between 30 and 40% (w.b.). The effect of tempering between SSD/HPD was also investigated. Shrinkage, color, rehydration behavior, texture (toughness and hardness), and microstructure of dried shrimp were measured. The results showed that SSD/HPD dried shrimp had much lower degree of shrinkage, higher degree of rehydration, better color, less tough and softer, and more porous than single-stage SSD dried shrimp. It was also found that SSD/AD gave redder shrimp compared to shrimp dried in a single-stage superheated steam dryer. No improvement in terms of shrinkage and rehydration behavior was observed, however.  相似文献   

16.
In order to establish the influence of the drying air characteristics on the drying performance and fluidization quality of bovine intestine for pet food, several drying tests have been carried out in a laboratory scale heat pump assisted fluid bed dryer. Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the materials freezing points, equipped with a continuous monitoring system. The investigation of the drying characteristics have been conducted in the temperature range ?10 to 25 °C and the airflow in the range 1.5–2.5 m/s. Some experiments were conducted as single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air temperature on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitive to the temperature. The effective diffusion coefficient of moisture transfer was determined by the Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported.Bovine particles were characterized according to the Geldart classification and the minimum fluidization velocity was calculated using the Ergun Equation and generalized equation for all drying conditions at the beginning and end of the trials. Walli's model was used to categorize stability of the fluidization at the beginning and end of the drying for each trial. The determined Walli's values were positive at the beginning and end of all trials indicating stable fluidization at the beginning and end for each drying condition.  相似文献   

17.
Hydrodynamics and drying kinetics for the pulp and paper primary sludge dried in a pulsed fluid bed dryer with relocated air stream are presented. Batch experiments have indicated that drying of disintegrated sludge to the required 12% moisture content takes place during the first drying period at practically constant material temperature close to the wet bulb temperature with respect to the inlet air conditions. Equations were developed for pressure drop, minimum pulsed-fluidization velocity, dynamic bed height, and volumetric mass transfer coefficient. Continuous experiments under drying conditions determined from the average residence time concept have confirmed that transportation of disintegrated sludge along the dryer follows the plug flow model.  相似文献   

18.
Drying of wheat (Algerian cultivar: Hadba03) in thin layers was studied and mass flux phenomenon was used to characterize the thin-layer drying process. Thin-layer drying of wheat was determined for drying air temperature range of 40–60°C, relative humidity of drying air from 10 to 30%, air velocity of 0.7 m/s, and initial grain moisture from 26 to 31% (dry basis). Equilibrium moisture content of wheat was determined using desorption isotherms obtained from the thin-layer drying data. An equilibrium model for a stationary deep bed with drying air moving vertically upward was developed using mass and energy balance between grain and drying air in the bed and drying air characteristics obtained from thin-layer drying experiments. The developed model was validated by drying wheat in a laboratory dryer using different drying air temperatures and initial moisture contents.  相似文献   

19.
A conical jet-spouted bed dryer with inert bodies was used for drying of animal blood plasma. The effects of the operating conditions on the product properties, final moisture content and throughput of the dryer were investigated. A drying rate model using the conventional rate equation, where the overall effective driving force is based on the surface temperature calculated from the unsteady-state heat transfer Fourier equation, was proposed. Satisfactory agreement between calculated and experimental results was obtained.  相似文献   

20.
ABSTRACT

Drying in superheated steam under pressure gives possibilities for pollution free drying, energy recovery. reduced drying time and a very compact drying equipment.

Products are dried i n a pressurized cellular fluid bed by super heated steam blown through the cells. Above the fluid bed dust is separated before the steam is reheated and recirculated to the cells by a fan. The evaporated water leaves the dryer as usable steam at e.g. 3 bar g, and full energy recovery is obtained. Today 14 plants have been builtor are under construction, with capacities from 2 to 40t / h water evaporation.

This technology is suited for drying of beet pulp, residues from starch production of corn or wheat. sludge. spent grain. brown coal. wood chips and bark.

The technology shows great options for integration in steam systems in various industries, whereby drying is possible without using primary energy and pollution is avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号