首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the effects of three factors: (1) use of a mixture of two different grades of hydroxypropyl methylcellulose (HPMC), (2) apparent viscosity, and (3) tablet hardness on drug release profiles of extended-release matrix tablets. The lot-to-lot apparent viscosity difference of HPMC K15M on in vitro dissolution was also investigated. Four test formulations were made, each containing 10% of a very water-soluble active pharmaceutical ingredient (API), 32% HPMC K15M, or a mixture of HPMC K100LV and HPMC K100M, 56% diluents, and 2% lubricants. Each formulation was made at two hardness levels. A 23 full factorial design was used to study various combinations of the three factors using eight experiments conducted in a randomized order. Dissolution studies were performed in USP apparatus I. The values of t50% (time in which 50% drug is released) and tlag (lag time, the time taken by the matrix tablet edges to get hydrated and achieve a state of quasi-equilibrium before erosion and the advance of solvent front through the matrix occur) were calculated from each dissolution profile. The similarity factor (f2) was also calculated for each dissolution profile against the target dissolution profile. A simple Higuchi-type equation was used to analyze the drug release profiles. Statistical analysis using analysis of variance (ANOVA) and similarity factor (f2) values calculated from the data indicated no significant difference among the t50% values and dissolution profiles respectively for all formulations. Within the 3.3-6 kp hardness range investigated, dissolution rates were found to be independent of tablet hardness for all the formulations. Although significantly shorter lag times were observed for the tablets formulated with low- and high-viscosity HPMC mixtures in comparison to those containing a single grade of HPMC, this change had no significant impact on the overall dissolution profiles indicated by the similarity factor f2 values. From this study it can be concluded that lot-to-lot variability in apparent viscosity of HPMC should not be a concern in achieving similar dissolution profiles. Also, results indicated that within the viscosity range studied (12,000-19,500 cps) an HPMC mixture of two viscosity grades can be substituted for another HPMC grade if the apparent viscosity is comparable. Also, the drug release is diffusion-controlled and depends mostly on the viscosity of the gel layer formed.  相似文献   

2.
The effect of cellulose ether polymer mixtures, containing both hydroxypropylcellulose (HPC) and hydroxypropylmethylcellulose (HPMC K15M or K100M), on ketoprofen (KTP) release from matrix tablets was investigated. In order to evaluate the compatibility between the matrix components, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD) experiments were performed. The results evidence the absence of significant intermolecular interactions that could eventually lead to an incompatibility between the drug and the different excipients. Formulations containing mixtures of polymers with both low and high viscosity grades were prepared by a direct compression method, by varying the polymer/polymer (w/w) ratio while keeping the drug amount incorporated in the solid dispersion constant (200?mg). The hardness values of different matrices were found within the range 113.8 to 154.9 N. HPLC analysis showed a drug content recovery between 99.3 and 102.1%, indicating that no KTP degradation occurred during the preparation process. All formulations attained a high hydration degree after the first hour, which is essential to allow the gel layer formation prior to tablet dissolution. Independent-model dissolution parameters such as t10% and t50% dissolution times, dissolution efficiency (DE), mean dissolution time (MDT), and area under curve (AUC) were calculated for all formulations. Zero-order, first-order, Higuchi, and Korsmeyer–Peppas kinetic models were employed to interpret the dissolution profiles: a predominantly Fickian diffusion release mechanism was obtained – with Korsmeyer–Peppas exponent values ranging from 0.216 to 0.555. The incorporation of HPC was thus found to play an essential role as a release modifier from HPMC containing tablets.  相似文献   

3.
Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f*2 values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.  相似文献   

4.
The objective of this study was to investigate the effect of the different physiological parameters of the gastrointestinal (GI) fluid (pH, buffer capacity, and ionic strength) on the in vitro release of the weakly basic BCS class II drug quetiapine fumarate (QF) from two once-a-day matrix tablet formulations (F1 and F2) developed as potential generic equivalents to Seroquel® XR. F1 tablets were prepared using blends of high and low viscosity grades of hydroxypropyl methylcellulose (HPMC K4M and K100LV, respectively), while F2 tablets were prepared from HPMC K4M and PEGylated glyceryl behenate (Compritol® HD5 ATO). The two formulations attained release profiles of QF over 24?h similar to that of Seroquel® XR using the dissolution medium published by the Food and Drug Administration (FDA). A series of solubility and in vitro dissolution studies was then carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH, buffer capacity and ionic strength range of the GIT. Solubility studies revealed that QF exhibits a typical weak base pH-dependent solubility profile and that the solubility of QF increases with increasing the buffer capacity and ionic strength of the media. The release profiles of QF from F1, F2 and Seroquel® XR tablets were found to be influenced by the pH, buffer capacity and ionic strength of the dissolution media to varying degrees. Results highlight the importance of studying the physiological variables along the GIT in designing controlled release formulations for more predictive in vitro–in vivo correlations.  相似文献   

5.
The objective of this study was to develop hydroxypropyl methylcellulose (HPMC) based controlled release (CR) formulations via hot melt extrusion (HME) with a highly soluble crystalline active pharmaceutical ingredient (API) embedded In the polymer phase. HPMC is considered a challenging CR polymer for extrusion due to its high glass transition temperature (Tg), low degradation temperature, and high viscosity. These problems were partially overcome by plasticizing the HPMC with up to 40% propylene glycol (PG). Theophylline was selected as the model API. By using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and X-ray powder diffraction (XRPD), the physical properties of the formulations were systematically characterized. Five grades of HPMC (Methocel®) – E6, K100LV, K4M, K15M, and K100M – were tested. The extrusion trials were conducted on a 16?mm twIn screw extruder with HPMC/PG placebo and formulations containing theophylline/HPMC/PG (30:42:28, w/w/w). The dissolution results showed sustained release profiles without burst release for the HPMC K4M, K15M, and K100M formulations. The extrudates have good dissolution stability after being stressed for 2 weeks under 40°C/75% RH open dish conditions and the crystalline API form did not change upon storage. Overall, the processing windows were established for the HPMC based HME-CR formulations.  相似文献   

6.
The purpose of this study was to apply the optimization method incorporating artificial neural network (ANN) using pH-independent release of weakly basic drug, carvedilol from HPMC-based matrix formulation. Because of weakly basic nature of carvedilol, drug shows pH-dependent solubility. The enteric polymer EUDRAGIT L100 was added formulations to overcome pH-dependent solubility of carvedilol. Effects of the Hydroxypropylmethyl cellulose (HPMC) K4M and EUDRAGIT L100 amount on drug release were investigated. For this purpose 13 kinds of formulations were prepared at three different levels of each variables. The optimization of the formulation was evaluated by using ANN method. Two formulation parameters, the amounts of HPMC K4M and Eudragit L100 at three levels (?1, 0, 1) were selected as independent/input variables. In-vitro dissolution sampling times at twelve different time points were selected as dependent/output variables. By using experimental dissolution results and amount of HPMC K4M and EUDRAGIT L100, percentage of dissolved carvedilol was predicted by ANN. Similarity factor (f2) between predicted and experimentally observed profile was calculated and f2 value was found 76.33. This value showed that there was no difference between predicted and experimentally observed drug release profile. As a result of these experiments, it was found that ANNs can be successfully used to optimize controlled release drug delivery systems.  相似文献   

7.
Abstract

Two varieties of HPMC, two varieties of NaCMC and various HPMC/NaCMC mixtures were characterized with the aim of providing a sound basis for the selection of appropriate mixtures to use as gelling agents in controlled-release tablets for hydrosoluble drugs. For both HPMC and NaCMC, one variety was of high and the other of low nominal viscosity. We also investigated possible relationships between the rheological properties of HPMC/NaCMC mixtures and atenolol release from tablets prepared with such mixtures. The mean molecular weights of each polymer variety were estimated on the basis of determination of their intrinsic viscosities in aqueous dispersions. Rotational viscosimetry of 2% aqueous dispersions of the polymers and polymer mixtures revealed rheological synergism in some mixtures. Drug dissolution trials were carried out in water and 0.1 N HCl. Dissolution medium, gelling agent composition and proportion of gelling agent in the tablet all affected dissolution profiles. Fitting of Korsmeyer et al.'s equation to the data for dissolution in water indicated zero-order dissolution kinetics for all formulations. For tablets prepared with the most viscous HPMC variety, %hour dissolution efficiency was closely correlated with the apparent viscosity (shear rate 0.5 s?1) of the aqueous dispersion of the polymer mixture used as gelling agent. Assays of tablet erosion rates indicated that the erosion mechanism may contribute to the observed zero-order dissolution kinetics, but that other factors are probably also involved.  相似文献   

8.
This article reports the exploitation of novel hydrophilic excipient, that is, mucilage from Hibiscus rosasinensis Linn, for the development of sustained release tablet. Swelling ratio and flow properties analyses of dried mucilage powder were carried out. A 32 full factorial design was used. In factorial design, amounts of dried mucilage and dibasic calcium phosphate (DCP) were taken as independent factors and percentage drug release in 60 and 300 min and time for 80% drug release as dependent variables. Matrix tablet containing dried mucilage and diclofenac sodium (DS) was prepared through direct compression techniques. DS tablets were evaluated for hardness, friability, weight variation, in vitro drug release and water uptake, and mass loss study. The dried mucilage powder shows superior swelling capacity and excellent flow properties. Prepared tablets have acceptable hardness, friability, and uniformity in weight. It was found that batch HD8 fulfills all selected criteria. Drug release kinetics from these formulations corresponded best to the zero-order kinetics. Water uptake was independent whereas mass loss was dependent on agitation speed. The concept of similarity factor (f2) was used to prove similarity of dissolution profile in distilled water and phosphate buffer and was found to be 90.68. It was concluded that mucilage can be used as release-retarding agent for 12 h when the drug–mucilage ratio was 1:1.5. So, matrix tablet containing dried mucilage is most suitable for sustained release of DS.  相似文献   

9.
Directly compressible controlled-release (CR) theophylline tablet formulations with a non-zero-order drug release were prepared using various grades of Methocels®. These tablet formulations were employed in the individualization of therapy with the aid of a pharmacokinetic simulation model developed with STELLA®II computer software. In vitro drug release data were used to simulate plasma concentration-time (C,t) profiles based on a wide range of previously reported patient pharmacokinetic parameters (clearances of 2–5 L/hr and apparent volumes of distribution of 20–50 L). The simulations indicated that formulations containing low-viscosity Methocels (E4, K4, and K4CR) were suitable for individualizing theophylline therapy. Average steady-state concentrations were well within the therapeutic range of 10–20 μg/ml. High-viscosity polymers such as E10CR, K15, and K15CR yielded subtherapeutic concentrations and were deemed unsuitable. Thus, a pharmacokinetic simulation program capable of predicting in vivo C,t profiles (even though theophylline release occurred by a non-zero order) may be useful for individualizing theophylline therapy that involves CR formulations.  相似文献   

10.
Objective: The purpose of this study was to develop hydroxypropylmethylcellulose (HPMC)-based sustained release (SR) tablets for tolterodine tartrate with a low drug release variation.

Methods: The SR tablets were prepared by formulating a combination of different grades of HPMC as the gelling agents. The comparative dissolution study for the HPMC-based SR tablet as a test and Detrusitol® SR capsule as a reference was carried out, and the bioequivalence study of the two products was also conducted in human volunteers.

Results: The amount of HPMC, the grade of HPMC and the combination ratio of different grades of HPMC had remarkable effects on drug release from the SR tablets. Both the test and reference products had no significant difference in terms of comparative dissolution patterns in four different media (f2 > 50). Furthermore, the dissolution method and rotation speed showed no effects on the drug release from the two products. The 90% confidence intervals of the AUC0–36 and Cmax ratios for the test and reference products were within the acceptable bioequivalence intervals of log0.8–log1.25.

Conclusions: A HPMC-based SR tablet for tolterodine tartrate with a low release variation was successfully developed, which was bioequivalent to Detrusitol® SR capsule.  相似文献   

11.
Objective: Venlafaxine is freely soluble In water and administered orally as hydrochloride salt In two to three divided doses. In the present investigation different release retarding matrices have been evaluated for sustained release of venlafaxine hydrochloride (VH) from the formulated tablets.

Materials and methods: Sustained release matrix tablets were formulated using different hydrophilic, hydrophobic and waxy materials as matrix formers. Tableting was done by pre-compression, direct compression and hot melt granulation depending on the type of matrix material used and evaluated for different tests. The formulated tablets were compared with commercial venlafaxine products. In vitro drug dissolution profiles were fitted In different mathematical models to elucidate the release mechanism.

Results: Dissolution data showed that commercial formulations Venlor XR® and Venfax PR® released the entire drug withIn 8?h where as the formulated tablets with hydroxypropylmethylcellulose (HPMC) and cetyl alcohol as matrix formers provided sustained release of drug for 14–15?h. The release was found to follow Hixson Crowel and Higuchi kinetics for HPMC and cetyl alcohol tablets, respectively.

Conclusion: The developed matrix tablet formulations with HPMC and cetyl alcohol provided sustained release profiles for prolonged periods than commercial formulations.  相似文献   

12.
Reaching nearly perfect sink conditions is very important in the determination of drug dissolution rates. Many times, the only factor that is taken into consideration in achieving sink conditions is the relation between the drug concentration and its solubility. The analytical conditions of the dissolution assay, as well as the dissolution apparatus, stirring speed, and nature and volume of the dissolution fluid may also influence the dissolution results. The main objective of this work was to study the influence of the stirring rate conditions and of the dissolution apparatus in the diltiazem hydrochloride release from tablets. Diltiazem hydrochloride sustained-release (SR) tablets were tested and the following dissolution parameters were evaluated: t10%, t25%, t50%, dissolution time, mean dissolution time (MDT), and dissolution efficiency (DE) at t120, and at t360. To analyze the release mechanism, several release models were tested, such as Higuchi, zero order, first order, Baker-Lonsdale, Hixson-Crowell, Weibull, and Korsmeyer-Peppas. The similarities between two in vitro dissolution profiles were assessed by the similarity factor f2. The in vitro release kinetics of diltiazem hydrochloride sustained-release tablets were evaluated using the USP 2 (paddle) and USP 4 (flow-through) apparatus.  相似文献   

13.
Attempting to prepare a convenient bioavailable formulation of vitamin B12 (cyanocobalamin), 17 tablet formulations were prepared by direct compression. Different concentrations of hydroxypropyl methyl cellulose (HPMC), carbopol 971p (CP971p), and chitosan (Cs) were used. The tablets were characterized for thickness, weight, drug content, hardness, friability, surface pH, in vitro drug release, and mucoadhesion. Kinetic analysis of the release data was conducted. Vitamin B12 bioavailability from the optimized formulations was studied on rabbits by the aid of enzyme-linked immunosorbent assay. Neurotone® I.M. injection was used for comparison. HPMC (F1-F4), CP971p (F5-F8), and HPMC/CP971p (F12-F15)-based formulations showed acceptable mechanical properties. The formulated tablets showed maximum swelling indices of 232?±?0.13. The surface pH values ranged from 5.3?±?0.03 to 6.6?±?0.02. Bioadhesive force ranged from 66?±?0.6 to 150?±?0.5?mN. Results showed that CP971p-based tablets had superior in vitro drug release, mechanical, and mucoadhesive properties. In vitro release date of selected formulations were fitted well to Peppas model. HPMC/CP971p-based formulations showed bioavailability up to 2.7-folds that of Neurotone® I.M. injection.  相似文献   

14.
Abstract

Sustained release tablet formulations for a new orally active iron chelator (1, 2, dimethyl-3-hydroxy-pyrid-4-one, DMHP or L1) have been developed. Coprecipitates containing DMHP and polymer were prepared and compressed into matrix-type tablets. The dissolution profiles as a function of (1) the type of polymer, and (2) polymer content, were determined. Both Eudragit types (RLPM and RSPM) and all hydroxypropylmethylcellulose (HPMC) grades (E4M, E10M, and K4M) exhibited significant sustained release activity. Above a certain ratio, increase in the polymer concentration did not provide any further decrease in the release rates. All grades of HPMC and both Eudragit RSPM and RLPM showed non-Fickian release kinetics. The role of HPMC and Eudragits in the formulation of a sustained release tablet of a water soluble drug is demonstrated.  相似文献   

15.
The purpose of this study was to investigate the effect of three process variables: distribution of hydroxypropyl methylcellulose (HPMC) within the tablet matrix, amount of water for granulation, and tablet hardness on drug release from the hydrophilic matrix tablets. Tablets were made both by direct compression as well as wet granulation method. Three formulations were made by wet granulation, all three having the exact same composition but differing in intragranular:intergranular HPMC distribution in the matrix. Further, each formulation was made using two different amounts of water for granulation. All tablets were then compressed at two hardness levels. Dissolution studies were performed on all tablets using USP dissolution apparatus I (basket). The dissolution parameters obtained were statistically analyzed using a multilevel factorial-design approach to study the influence of the various process variables on drug release from the tablets. Results indicated that a change in the manufacturing process could yield significantly dissimilar dissolution profiles for the same formulation, especially at low-hardness level. Overgranulation could lead to tablets showing hardness-dependent drug-release characteristics. Studies showed that intergranular addition of a partial amount of HPMC (i.e., HPMC addition outside of granules) provided a significant advantage in making the formulation more robust over intragranular addition (i.e., that in which the entire amount of HPMC was added to the granules). Dissolution profiles obtained for these tablets were relatively less dependent on tablet hardness irrespective of the amount of water added during granulation.  相似文献   

16.
Context: Mini-tablets are compact dosage forms, typically 2–3 mm in diameter, which have potential advantages for paediatric drug delivery. Extended release (ER) oral dosage forms are intended to release drugs continuously at rates that are sufficiently controlled to provide periods of prolonged therapeutic action following each administration, and polymers such as hypromelllose (HPMC) are commonly used to produce ER hydrophilic matrices.

Objective: To develop ER mini-tablets of different sizes for paediatric delivery and to study the effects of HPMC concentration, tablet diameter and drug solubility on release rate.

Methods: The solubility of Hydrocortisone and theophylline was determined. Mini-tablets (2 and 3 mm) and tablets (4 and 7 mm) comprising theophylline or hydrocortisone and HPMC (METHOCEL? K15M) at different concentrations (30, 40, 50 and 60%w/w) were formulated. The effect of tablet size, HPMC concentration and drug solubility on release rate and tensile strength was studied.

Results and Discussion: Increasing the HPMC content and tablet diameter resulted in a significant decrease in drug release rate from ER mini-tablets. In addition, tablets and mini-tablets containing theophylline produced faster drug dissolution than those containing hydrocortisone, illustrating the influence of drug solubility on release from ER matrices. The results indicate that different drug release profiles and doses can be obtained by varying the polymer content and mini-tablet diameter, thus allowing dose flexibility to suit paediatric requirements.

Conclusion: This work has demonstrated the feasibility of producing ER mini-tablets to sustain drug release rate, thus allowing dose flexibility for paediatric patients. Drug release rate may be tailored by altering the mini-tablet size or the level of HPMC, without compromising tablet strength.  相似文献   

17.
The objective of this study was to formulate directly compressible rapidly disintegrating tablets of fenoverine with sufficient mechanical integrity, content uniformity, and acceptable palatability to assist patients of any age group for easy administration. Effect of varying concentrations of different superdisintegrants such as crospovidone, croscarmellose sodium, and sodium starch glycolate on disintegration time was studied. Tablets were evaluated for weight variation, thickness, hardness, friability, taste, drug content, in vitro and in vivo disintegration time, and in vitro drug release. Other parameters such as wetting time, water absorption ratio (‘R’), and drug-excipient compatibility were also evaluated. The disintegration time of the best rapidly disintegrating tablet formulation among those tested was observed to be 15.9 sec in vitro and 37.16 sec in vivo. Good correlation was observed between disintegration time and ‘R’ for each of the three superdisintegrants at the concentrations studied. Considering the ‘R’ values and disintegration time, crospovidone was significantly superior (p < 0.05) compared to the other superdisintegrants tested. Release of drug was faster from formulations containing 6% crospovidone (CP 6) compared to the marketed fenoverine (Spasmopriv®) capsules. Similarity factor ‘f2’ (51.5) between dissolution profiles of the rapidly disintegrating tablet formulation CP 6 and the marketed formulation indicated that the two dissolution profiles were similar. Differential scanning calorimetric studies did not indicate any excipient incompatibility, either during mixing or after compression. In conclusion, directly compressible rapidly disintegrating tablets of fenoverine with lower friability, acceptable taste, and shorter disintegration times were obtained using crospovidone and other excipients at optimum concentrations.  相似文献   

18.
Two varieties of HPMC, two varieties of NaCMC and various HPMC/NaCMC mixtures were characterized with the aim of providing a sound basis for the selection of appropriate mixtures to use as gelling agents in controlled-release tablets for hydrosoluble drugs. For both HPMC and NaCMC, one variety was of high and the other of low nominal viscosity. We also investigated possible relationships between the rheological properties of HPMC/NaCMC mixtures and atenolol release from tablets prepared with such mixtures. The mean molecular weights of each polymer variety were estimated on the basis of determination of their intrinsic viscosities in aqueous dispersions. Rotational viscosimetry of 2% aqueous dispersions of the polymers and polymer mixtures revealed rheological synergism in some mixtures. Drug dissolution trials were carried out in water and 0.1 N HCl. Dissolution medium, gelling agent composition and proportion of gelling agent in the tablet all affected dissolution profiles. Fitting of Korsmeyer et al.'s equation to the data for dissolution in water indicated zero-order dissolution kinetics for all formulations. For tablets prepared with the most viscous HPMC variety, %hour dissolution efficiency was closely correlated with the apparent viscosity (shear rate 0.5 s-1) of the aqueous dispersion of the polymer mixture used as gelling agent. Assays of tablet erosion rates indicated that the erosion mechanism may contribute to the observed zero-order dissolution kinetics, but that other factors are probably also involved.  相似文献   

19.
Concomitant ingestion of alcohol and medications can greatly affect drug plasma concentrations as dose dumping or failure may occur as a result of the fact that formulation excipients may not always be resistant to alcohol. In this study, a natural polysaccharide (Sesamum radiatum gum) (SG) was extracted, characterized and used to formulate sustained release theophylline compacts to study the effect of varying alcohol concentrations (v/v) in dissolution media on drug release from these compacts. X-ray powder diffraction showed that the extracted gum was amorphous in nature with the powder having excellent compaction properties as observed with its compact being significantly harder than those prepared with pure hydroxypropyl methyl cellulose (HPMC) K4M. X-ray microtomography showed that the compacts produced were homogenous in nature, however, swelling studies showed failure of the compacts at the highest concentration of absolute ethanol used (40% v/v). Dissolution studies showed similarity at all levels of alcohol tested (f2?=?57–91) in simulated gastric (0.1?N HCl, pH 1.2) and intestinal fluids (phosphate buffer, pH 6.8) for the HPMC compacts whereas dissimilarity only occurred for the SG compacts at the highest alcohol concentration in both media (f2?=?35). The suitability of SG as a matrix former that can resist alcoholic effects therefore makes it suitable as an alternative polymer with wider applications for drug delivery.  相似文献   

20.
Abstract

To establish en in vitro test method that can predict the drug release and dissolution behaviour of vaginal bioadhesive controlled release tablets, a system was developed and its appropriateness to the in situ conditions was examined. For this purpose, the dissolution rates of vaginal bioadhesive tablets were measured by three different methods. These were, USP dissolution apparatus two and a new vaginal dissolution tester (NVDT) which was developed by us with some modification of the vaginal tablet desentegration apparatus of BP 1988 and, testing in cow vaginas in situ. Four different bioadhesive tablet formulations were used being composed of the drug and the anionic polymer, polyacrylic acid (PAA) and the nonionic polymers, hydroxypropylmethyl cellulose (HPMC) and ethyIcellulose (EC). The release profiles of the in vitro and in situ methods were investigated and evaluated kinetically.

It was found that NVDT could be used to investigate the drug release from vaginal tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号