首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A feasibility study of paddy drying by fluidization technique was conducted. Operating parameters affecting product quality, drying capacity and energy consumption were investigated. Experimental results showed that drying rate of a paddy kernel was controlled by diffusion. However, drying capacity of a dryer increased with specific air flow rates and drying air temperatures. Energy consumption was reduced when specific air flow rate decreased or when fraction of recycled air increased. Maximum temperature should be limited to 115%C and final moisture content of paddy at 24-25% dry basis if product qualities were maintained. Simulated results obtained from a developed mathematical model indicated that the optimum operating parameters should be as follows : fraction of air recycled of 80%, air velocity of 4.4 m/s, bed thickness of 9.5 cm and specific air flow rate of 0.1 kg/s-kg dry matter. An economic analysis showed that total drying cost was US$ 0.08/kg water evaporated.  相似文献   

2.
A feasibility study of paddy drying by fluidization technique was conducted. Operating parameters affecting product quality, drying capacity and energy consumption were investigated. Experimental results showed that drying rate of a paddy kernel was controlled by diffusion. However, drying capacity of a dryer increased with specific air flow rates and drying air temperatures. Energy consumption was reduced when specific air flow rate decreased or when fraction of recycled air increased. Maximum temperature should be limited to 115%C and final moisture content of paddy at 24-25% dry basis if product qualities were maintained. Simulated results obtained from a developed mathematical model indicated that the optimum operating parameters should be as follows : fraction of air recycled of 80%, air velocity of 4.4 m/s, bed thickness of 9.5 cm and specific air flow rate of 0.1 kg/s-kg dry matter. An economic analysis showed that total drying cost was US$ 0.08/kg water evaporated.  相似文献   

3.
ABSTRACT

A cross-flow fluidized bed paddy dryer with a capacily of 200 kgh was designed, fabricated and tested. Experimental results showed that final moisture content of paddy should not be lower than 23 % dry-basis if quality is to be maintained. Drying air temperature was keot constant at 115°C according to the recommendation of previous work. Results obtained from the mathematical model developed in this study indicatedthat optimum operating parameters should be as follows : air speed of 2.3 m/s, bed thickness of 10 cm and fraction of air recycled of 80 %. At this condition, energy consumption was close to the minimum while drying capacity was near the maximum. A prototype fluidized bed dryer with a capacity of 1 t/h was designed, fabricated and installed with the collaboration of a private company. The unit has been used for almost the whole past harvesting season in 1994 at a paddy merchant sile with preference compared to conventional column continuous dryers. More than 300 tons of paddy were dried without any problems.  相似文献   

4.
A cross-flow fluidized bed paddy dryer with a capacily of 200 kgh was designed, fabricated and tested. Experimental results showed that final moisture content of paddy should not be lower than 23 % dry-basis if quality is to be maintained. Drying air temperature was keot constant at 115°C according to the recommendation of previous work. Results obtained from the mathematical model developed in this study indicatedthat optimum operating parameters should be as follows : air speed of 2.3 m/s, bed thickness of 10 cm and fraction of air recycled of 80 %. At this condition, energy consumption was close to the minimum while drying capacity was near the maximum. A prototype fluidized bed dryer with a capacity of 1 t/h was designed, fabricated and installed with the collaboration of a private company. The unit has been used for almost the whole past harvesting season in 1994 at a paddy merchant sile with preference compared to conventional column continuous dryers. More than 300 tons of paddy were dried without any problems.  相似文献   

5.
ABSTRACT

The objectives of this research are to design, construct and test a mobile fluidized bed paddy dryer with a drying capacity of 2.5-4.0 t/h. Suitable drying conditions are recommended as follows : drying capacity 3.8 t/h, bed velocity 2.8 m/s, average drying air temperature 144 °C, bed height 13.5 cm, fraction of air recycled 0.8. Residence time of paddy was approximately 1.3 minutes. Test results showed that moisture content of paddy was reduced from 32.6 % dry-basis to 25.8 % dry-basis. Consumption of electrical power and diesel fuel was 12.9 kW and 21.71 1/h respectively. Primary energy consumption was 910.9 MJ/h. The dryer could evaporate water 218.8 kg/h. Specific primary energy consumption was 4.2 MJ/kg-water evaporated. Cost of paddy drying was 1.48 baht/kg-water evaporated of which 0.53 was fixed cost and 0.95 was energy cost (US$1 =34baht).  相似文献   

6.
The objectives of this research are to design, construct and test a mobile fluidized bed paddy dryer with a drying capacity of 2.5-4.0 t/h. Suitable drying conditions are recommended as follows : drying capacity 3.8 t/h, bed velocity 2.8 m/s, average drying air temperature 144 °C, bed height 13.5 cm, fraction of air recycled 0.8. Residence time of paddy was approximately 1.3 minutes. Test results showed that moisture content of paddy was reduced from 32.6 % dry-basis to 25.8 % dry-basis. Consumption of electrical power and diesel fuel was 12.9 kW and 21.71 1/h respectively. Primary energy consumption was 910.9 MJ/h. The dryer could evaporate water 218.8 kg/h. Specific primary energy consumption was 4.2 MJ/kg-water evaporated. Cost of paddy drying was 1.48 baht/kg-water evaporated of which 0.53 was fixed cost and 0.95 was energy cost (US$1 =34baht).  相似文献   

7.
ABSTRACT

Appropriate strategy for drying chopped spring onion with a batchwise flat bed was investigated. Both experimental and simulated results such as product quality, drying capacity and energy consumption were taken into consideration. For simulation work, equations of drying parameters such as specific heat, equilibrium moisture content and thin layer drying were first developed from the lab-scale experimental results. Then a mathematical model including shrinkage for a batchwix flat bed drying was developed. The model was lested with the results obtained from a food processing plant with an acceptable accuracy. Appropriate drying strategy war then investigated. The approximate conclusion was that the drying should be devided into 3 stages. In the 1st stage, drying air temperature was 80°C, specific air flow rate was 33.9 m3/min -kg dry matter and drying time was 0.5 h. In the 2nd stage, drying air temperature and drying time were kept unchanged but specific air flow rate was decreased to 13.5 m3/min - kg dry matter. In the final stage, drying air temperature was decreased to 67°C, specific air flow rate was also decreased to 6.8 m3/min - kg dry matter and drying time was approximately 1.7 h. Following the suggested strategy, specific primary energy cornsumption was 6.2 MJ/kg H2O, drying time was 2.7 h and product quality was maintained. It was proven that energy consumption was approximalcly 70% of that of the present practice in the plant.  相似文献   

8.
Abstract

It is very important to know how operating condition of a coaxial impinging stream dryer affects the drying time, parboiled rice quality and energy consumption. The drying temperature, parboiled paddy feed rate, drying air velocity and impinging distance were experimentally investigated. Increases in drying temperature and air velocity and a decrease in paddy feed rate provided higher evaporation rate whilst impinging distance, ranging from 5 to 13?cm, did not affect the evaporation rate. Collision between kernels within the impinging zone caused the hull’s lemma splitting from the kernel and the percentage of the split kernel strongly depended on the air velocity and feed rate. The acceleration in the rate of drying by changing the above operating parameters did not affect the head rice yield. In addition, the collision of kernels also did not influence the head rice yield since the mechanical properties of rice are strengthened during steaming step in the parboiling process. However, the change of head rice quality was only governed by the moisture content after drying. The total energy consumption including electricity and heat was strongly depended on the air velocity and feed rate whilst it was slightly changed with the drying temperature. From the present study, it was recommended that the parboiled paddy should not be dried below 25% d.b. and the highest temperature that could possibly be used was 190?°C and the inlet air velocity should not be below 15?m/s.  相似文献   

9.
The objectives of this research were to investigate empirical and diffusion models for thin-layer crumb rubber drying for producing STR20 rubber using hot air temperatures of 110–130°C and to study the effect of drying parameters such as inlet drying temperature, volumetric flow rate, and initial moisture content on the quality of dried rubber. Finally, a mathematical drying model for predicting the drying kinetics of crumb rubber was developed using inlet air flow rates of 300–600 m3/min-m3 of crumb rubber (equivalent to 1.8–5.0 m/s) with the crumb rubber thickness fixed at 0.25 m. The average initial moisture content of samples was in the ranges of 40 and 50% dry basis while the desired final moisture content was below 5% dry basis. The results showed that the drying equation of crumb rubber was highly related to the inlet air temperature, while the drying constant value was not proportional to the initial moisture content. Consequently, the experimental data were formulated using nine empirical models and the analytical solution of moisture ratio equation was developed by Fick's law of diffusion. The result showed that the simulated data best fitted the logarithmic model and was in reasonable agreement to the experimental data. The effective diffusion coefficient of crumb rubber was in the range of 1.0 × 10?9 to 2.15 × 10?5 m2/s corresponding to drying temperatures between 40 and 150°C, respectively. The effects of air recirculation, inlet drying temperature, initial moisture contents, air flow rate, and drying strategies on specific energy consumption and quality of samples were reported. The experiments were conducted using two different drying strategies as follows: one-stage and two-stage drying conditions. The results showed that initial moisture content and air flow rates significantly affected the specific energy consumption and quality of rubber, while the volumetric air flow rate acted as dominant effect to the specific energy consumption. The simulated results concluded that the percentage of recycled air between 90 and 95% provided the lowest specific energy consumption as compared to the others.  相似文献   

10.
The kinetics of combined hot-air/infrared thin-layer drying of paddy was studied. The mechanical quality aspects of paddy kernels dried at different drying conditions were evaluated in terms of percentage of cracked kernels and also required failure force obtained from bending tests. The well-known Artificial Neural Network (ANN) modeling technique was applied to predict the drying time, variations in paddy moisture content, the percentages of cracked kernels, and the values of required failure force of paddy at different drying conditions. The best ANN topologies, transfer functions, and training algorithms were determined for prediction of the mentioned parameters. In addition to the product quality aspects, the specific energy consumption (SEC) was estimated for all drying conditions. The results indicated that application of a low-intensity IR radiation (2000 W/m2), together with lower values of inlet air temperature (30°C) and moderate values of inlet air velocity (0.15 m/s), can effectively improve the final quality of paddy (as a heat-sensitive product) with a reasonable SEC.  相似文献   

11.
ABSTRACT

The objective of this paper is to design and test a prototype, 0.82 ton/h capacity, fluidzed bed paddy dryer for high moisture paddy. Exhausted air is paritially recycled. Experimental results showed that the unit operated efficiently and yielded high product quality in terms of head yield and whiteness. In reducing the moisture content from 45% to 24% dry-basis using air temperature of 100–120°C, fraction of air recycled of 0.66, specific air flow rate of 0.05, kg/s-kg dry matter, superficial air velocity of 3.2 m/s, bed depth of 0.1 m, total primary energy consumption was 2.32 MJ/kg water evaporated of which 0.35 was primary energy from electricity (electrical energy multiplied by 2.6) and 1.79 was primary energy in terms of heat.  相似文献   

12.
Several studies have been conducted on equipping conventional fluidized bed with some technologies to increase drying efficiency and its performance. The objective of this study was to investigate the influence of high-power ultrasound (HPU) on fluidized bed drying of paddy in terms of drying kinetics, grain quality (percentage of cracked kernels and bending strength of grain kernels), and specific energy consumption (SEC). To decrease the initial moisture content of paddy from 26.5?±?0.5% (kg/kg, d.b) to the final moisture content of 13?±?0.5% (kg/kg, d.b), the experiments were conducted in a factorial design at three levels of ultrasound power densities (11.1, 14.6, and 18.7?kW/m3), four levels of frequencies (20, 25, 28, and 30?kHz), and three levels of drying air temperatures (30, 40, and 50°C). Application of HPU in conjunction with conventional fluidized bed drying led in 23% decrease in drying time as well as improvement in grain quality, in terms of percentage of cracked kernels and bending strengths. In addition, SEC reduced approximately by 22%, as HPU applied at selected drying condition.  相似文献   

13.
Abstract

Equilibrium moisture content isotherms for Spanish hazelnut (Corylus avellana L.) at different temperatures (30°C-80°C) were determined using static gravimetric method. Thin layer drying experiments were done with forced air circulation and were conducted with different operating conditions to determine the drying characteristics of hazelnuts. The effect of air temperature (30°C-70°C), air velocity (0.5 m/s - 2 m/s) and drying bed loading density (50 kg/m2 - 150 kg/m2) on drying of unshelled and shelled hazelnuts was studied. Six mathematical models were used to fit the experimental equilibrium moisture content data, from which the G.A.B. model was found to give the best fit. Diffusion coefficients were determined by fitting experimental thin-layer drying curves to the Fick's diffusion model. Variation of the effective diffusion coefficient with temperature was of the Arrhenius type. The Page equation was found to describe adequately the thin layer drying of hazelnut. Page equation drying parameters k and n were correlated with air temperature and relative humidity.  相似文献   

14.
ABSTRACT

The purpose of this research was to investigate strategies for papaya glacé drying in tunnel. To evaluate the optimum conditions of drying, corresponding mathematical models were also considered. The criteria set for this study included low drying time, low specific energy consumption and acceptable qualities of papaya glace. The results obtained from the model of batch tunnel drying were in good agreement with the experimental ones. From the mathematical models, it was found that the optimum conditions of the first stage of drying of papaya glace (3.1×7.8×1.4 cm) were drying temperature of 70°C, specific air flow rate of 12 kg/h-kg dry papaya glace (velocity of 1.25 m/s) and air recycle ratio of 70%. In the second stage of drying papaya glace (0.98×0.98×0.98 cm), it was found that the optimum drying conditions were: drying air temperature of 55°C, specific air flow rate of 10 kg/h-kg dry papaya glace (velocity of 0.6 m/s) and air recycle ratio of 80%. Ambient air temperature and relative humidity were 30°C and 70% respectively.  相似文献   

15.
A general mathematical model of heat and mass transfer was developed to simulate the microwave-assisted fluidized bed drying of bulk grain. The model was solved using the well-known Runge-Kutta-Gill method. The model is capable of predicting the moisture content of soybean as well as the drying air parameters (i.e., drying air temperature and moisture content) during drying. The values of mean relative deviation (MRD) were less than 8 and 10% for prediction of grain moisture content and outlet air parameters, respectively, which reflects an acceptable accuracy. In comparison with conventional fluidized bed drying of soybean, microwave-assisted fluidized bed drying led to 83.39–98.07% savings in drying time and 82.07–95.22% savings in specific energy consumption when reducing soybean moisture content from 18.32 to 12% (db).  相似文献   

16.
This article is concerned with the energy and exergy analyses of the continuous-convection drying of potato slices. The first and second laws of thermodynamics were used to calculate the energy and exergy. A semi-industrial continuous-band dryer has been designed and used for drying experiments. The equipment has a drying chamber of 2 m length and the inlet air used for drying is heated by gas power. The experiments were conducted on potato slices with thickness of 5 mm at three different air temperatures of 50, 60 and 70°C, drying air mass flow rates of 0.61, 1.22, and 1.83 kg/s and feeding rates of 2.31 × 10?4, 2.78 × 10?4, and 3.48 × 10?4 kg/s. The energy utilization and energy utilization ratio were found to vary between 3.75 and 24.04 kJ/s and 0.1513 and 0.3700, respectively. These values show that only a small proportion of the supplied energy by the heater was used for drying. The exergy loss and exergy efficiency were found to be in the range of 0.5987 to 13.71 kJ/s and 0.5713 to 0.9405, respectively, indicating that the drying process was thermodynamically inefficient and much energy was vented in the exhaust air. In addition, the results showed that the feeding rate and the temperature and flow rate of the drying air had an important effect on energy and exergy use. This knowledge will provide insights into the optimization of a continuous dryer and the operating parameters that causes reduction of energy consumption and losses in continuous drying.  相似文献   

17.
Energy consumption and rice quality are the main concerns of millers and must be assessed to ascertain suitable industrial drying strategy. In this article, industrial paddy drying methods as usually practiced in the BERNAS paddy drying complexes of Malaysia have been evaluated. The analysis showed that the specific electrical and thermal energy consumption varied between 16.19 kWh to 22.07 kWh and 787.22 MJ to 1015.32 MJ, respectively, in single-stage paddy drying (SSPD) using an inclined bed dryer (IBD) to dry each tonne of freshly harvested paddy with average moisture content of 23.35 ± 0.86% wb. On the other hand, the energy consumptions for two-stage paddy drying (TSPD) with a fluidized bed dryer (FBD) followed by IBD were 21.37 kWh/t to 30.69 kWh/t and 666.81 MJ/t to 1083.42 MJ/t, respectively. SSPD at 35–39°C and TSPD using FBD at 120°C as the first stage, followed by IBD as the second stage at lower temperature of 35–39°C yielded 2–3.6% higher head rice yield than paddy-dried by a single stage with IBD using comparatively higher temperature of 40–44°C. Therefore, IBD is recommended to be operated using a temperature of 35–39°C both in single-stage drying and second-stage drying of paddy after fluidized bed drying to obtain quality rice.  相似文献   

18.
19.
An air jet drying system composed of a turbo blower, an air ejector and three stage cyclones is constructed to produce a dried powder through water content reduction of dewatered cake obtained from sludge treatment process. The air flow to be ventilated by the turbo blower forms a high speed flow field by passing through the air ejector and a circulative flow field by passing through the cyclones. Dewatered cake, 100 mm in size, is disintegrated by jet and collision through passing the air ejector and becomes fragmented with size no more than 2mm. These fragmented particles follow air flow and are dried as moisture is evaporated from particle surface. A powder composed of 1.6 mm spherical particles is produced from pilot scale equipment of 1 ton/hr under the conditions of air velocity, maximum flow rate and air temperature profile of 84 m/sec, 180 m3/min and 73-28 °C, respectively. The air dried powder with average water content of 49.8 wt% is recovered after drying the dewatered cake with water content of 83.3 wt% in a real operation, indicating 33.5 wt% decrease in water content. It is estimated that the power consumption of the air jet drying system requires 92 kWh/Ton to reduce the water content by 33.5 wt%, which is no more than a half against heat drying system to consume 164 kWh/ton.  相似文献   

20.
ABSTRACT

In a recent article, Baker described a novel technique for estimating the energy consumption of well-mixed fluidized bed dryers based on the use of experimental drying curves. An integrated approach to performing sizing and energy consumption calculations for such dryers using this technique is described in the present paper. A computer program, which includes not only the dryer simulator but also a heat recovery module and an exhaust air recycle option, is used to evaluate the viability of different energy-conservation strategies. The effects of operating parameters such as bed temperature, solids loading and air velocity on energy consumption and bed area are also explored. The observed drying kinetics are shown to have a major effect on the optimal design and operation of the dryer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号