首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to promote the introduction of emerging technologies in the process industry, it has been established the two types of supporting R&D activities can be effectively pursued in parallel: (1) new catalyst synthesis methods that eliminate or minimize mass transfer limitations; and (2) multi-functional reactors by integrating catalysis, heat transfer and/or separation. Catalyst Synthesis: In this paper, several methods of catalyst tailoring will be described that can minimize mass transfer limitations at industrially relevant conversion levels. Three (3) specific examples have been selected to demonstrate what can be achieved: (1) micro-engineered catalyst that enables enhanced inter-phase transfer; (2) new mesoporous catalysts with ultra large pores to accommodate slowly diffusing reactants; and (3) customized zeolites of extremely small particles to achieve high effectiveness factors while retaining the virtues of shape selectivity. Multi-functional Reactors: Applying process intensification principles, mature high-volume petrochemical processes can be improved dramatically, beyond the expected progress. This will be described using three (3) specific examples: (1) intra-reactor oxidative reheat for the production of styrene, by staging endothermic and exothermic reactions in series; (2) simultaneous operation of endothermic, dissociative adsorption of methane with exothermic, oxidative removal of carbon during catalytic partial oxidation; and (3) catalytic distillation for the production of ethers, ethyl benzene and the selective hydrogenation of highly unsaturated components in olefins streams.  相似文献   

2.
Sorption‐enhanced glycerol reforming, an integrated process involving glycerol catalytic steam reforming and in situ CO2 removal, offers a promising alternative for single‐stage hydrogen production with high purity, reducing the abundant glycerol by‐product streams. This work investigates this process in a fixed‐bed reactor, via a two‐scale, nonisothermal, unsteady‐state model, highlighting the effect of key operating parameters on the process performance. CO2 adsorption kinetics was investigated experimentally and described by a mathematical reaction‐rate model. The integrated process presents an opportunity to improve the economics of green hydrogen production via an enhanced thermal efficiency process, the exothermic CO2 adsorption providing the heat to endothermic steam glycerol reforming, while reducing the capital cost by removing the processing steps required for subsequently CO2 separation. The operational time of producing high‐purity hydrogen can be enhanced by increasing the adsorbent/catalyst volume ratio, by adding steam to the reaction system and by increasing the inlet reactor temperature. © 2012 American Institute of Chemical Engineers AIChE J, 59: 2105–2118, 2013  相似文献   

3.
4.
CO2 reforming, oxidative conversion and simultaneous oxidative conversion and CO2 or steam reforming of methane to syngas (CO and H2) over NiO–CoO–MgO (Co: Ni: Mg=0·5: 0·5:1·0) solid solution at 700–850°C and high space velocity (5·1×105 cm3 g−1 h−1 for oxidative conversion and 4·5×104 cm3 g−1 h−1 for oxy-steam or oxy-CO2 reforming) for different CH4/O2 (1·8–8·0) and CH4/CO2 or H2O (1·5–8·4) ratios have been thoroughly investigated. Because of the replacement of 50 mol% of the NiO by CoO in NiO–MgO (Ni/Mg=1·0), the performance of the catalyst in the methane to syngas conversion process is improved; the carbon formation on the catalyst is drastically reduced. The CoO–NiO–MgO catalyst shows high methane conversion activity (methane conversion >80%) and high selectivity for both CO and H2 in the oxy-CO2 reforming and oxy-steam reforming processes at ⩾800°C. The oxy-steam or CO2 reforming process involves the coupling of the exothermic oxidative conversion and endothermic CO2 or steam reforming reactions, making these processes highly energy efficient and also safe to operate. These processes can be made thermoneutral or mildly exothermic or mildly endothermic by manipulating the process conditions (viz. temperature and/or CH4/O2 ratio in the feed). © 1998 Society of Chemistry Industry  相似文献   

5.
An LaFe0.5Mg0.5O3/Al2O3/FeCrAl metallic monolith catalyst for the exothermic catalytic combustion of methane and an Ni/SBA-15/Al2O3/FeCrAl metallic monolith catalyst for the endothermic reforming of methane with CO2 have been prepared. A laboratory-scale tubular jacket reactor with the Ni/SBA-15/Al2O3/FeCrAl catalyst packed into its outer jacket and the LaFe0.5Mg0.5O3/Al2O3/FeCrAl catalyst packed into its inner tube was devised and constructed. The reactor allows a coupling of the exothermic and endothermic reactions by virtue of their thermal matching. An experimental study in which the temperature difference between the chamber of the external electric furnace and the metallic monolith catalyst bed in the jacket was kept very small, by adjusting the power supply to the furnace, confirmed that the heat absorbed in the reforming reaction does indeed partly come from that evolved in the catalytic combustion of methane, and that the direct thermal coupling of the two reactions in the reactor can be realized in practice. When the temperature of the electric furnace chamber was 1088 K, and the gas hourly space velocities (GHSVs) of the reactant mixtures passed through the inner tube and the jacket were 382 h−1 and 40 h−1, respectively, the conversions of methane and CO2 in the reforming reaction were 93.6% and 91.7%, respectively, and the heat efficiency reached 81.9%. Stability tests showed that neither catalyst underwent deactivation during 150 h on stream.  相似文献   

6.
A two‐dimensional steady‐state model of a catalytic plate reactor for diesel steam reforming is developed. Heat is provided indirectly to endothermic reforming sites by flue gas from a SOFC tail‐gas burner. Two experimentally validated kinetic models on diesel reforming on platinum (Pt) catalyst were implemented for a comparative study; the model of Parmar et al., Fuel. 2010;89(6):1212–1220 for a Pt/Al2O3 and the model of Shi et al., International Journal of Hydrogen Energy. 2009;34(18):7666–7675 for a Pt/Gd‐CeO2 (GDC). The kinetic models were compared for: species concentration, approach to equilibrium, gas hourly space velocity and effectiveness factor. Cocurrent flow arrangement between the reforming and the flue gas channels showed better heat transfer compared to counter‐current flow arrangement. The comparison between the two kinetic models showed that different supports play significant role in the final design of a reactor. The study also determined that initial 20% of the plate reactor has high diffusion limitation suggesting to use graded catalyst to optimize the plate reactor performance. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1102–1113, 2017  相似文献   

7.
Microscale autothermal reactors remain one of the most promising technologies for efficient hydrogen generation. The typical reactor design alternates microchannels where reforming and catalytic combustion of methane occur, so that exothermic and endothermic reactions take place in close proximity. The influence of flow arrangement on the autothermal coupling of methane steam reforming and methane catalytic combustion in catalytic plate reactors is investigated. The reactor thermal behavior and performance for cocurrent and countercurrent are simulated and compared. A partial overlapping of the catalyst zones in adjacent exothermic and endothermic channels is shown to avoid both severe temperature excursions and reactor extinction. Using an innovative, optimization‐based approach for determining the catalyst zone overlap, a solution is provided to the problem of determining the maximum reactor conversion within specified temperature bounds, designed to preserve reactor integrity and operational safety. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

8.
Urea‐formaldehyde resins modified by melamine were synthesized by four catalysts (H2SO4, HCl, H3PO4, and NaOH/NH4OH) with a F/U/M molar ratio of 1.38/1/0.074. Resin structure and thermal behavior were studied by 13C‐NMR and DSC techniques. For H2SO4, HCl, and H3PO4 catalysts, resins were prepared by two stage pH adjustment: the first pH stage was set at 1.25 (H3PO4 pH 1.60) and second pH stage was set at 5.0. For the NaOH/NH4OH catalyst, the resin was set at pH 5.0 from the start. Of the four catalysts, HCl catalyzed resins, with the highest free urea and lowest free formaldehyde, consistently yielded the lowest formaldehyde emission; NaOH/NH4OH catalyst resulted in the best IB strength tested at dry conditions and also after 24 h cold water soak and the lowest water absorption and thickness swell. The resins catalyzed with H3PO4 had the highest free formaldehyde and no free urea yielding the highest formaldehyde emission. Each DSC thermogram was proceeded by a weak exothermic peak and followed by an obvious endothermic peak. The exothermic peak temperatures were 125.0, 131.1, 111.4, and 125.2°C, and endothermic peak temperatures were 135.8, 147.6, 118.9, and 138.4°C, respectively, for H2SO4, HCl, H3PO4, and NaOH/NH4OH catalysts. The close proximity of the peak temperatures of the exothermic and endothermic reactions strongly suggests that there is potential interference of heat flow between the exothermic and endothermic reactions which may impact resin curing. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
GaN‐containing titanosilicate catalysts were used for the first time for the oxidative dehydrogenation (ODH) of n‐butane at a relatively low reaction temperature (460 °C). Commercially available GaN powder with a wurtzite crystal structure showed superior reactivity and stability for the ODH of n‐butane. The catalytic property of GaN catalyst for ODH strongly depends on the GaN particle size. The effects of the GaN weight percentage and GaN particle size on the catalytic performance are investigated in a fixed bed reactor. Based on the physicochemical properties of the catalyst characterized via TEM, DLS, N2 adsorption‐desorption, XRF, O2‐TPD, XRD, XPS, and in‐situ FTIR, the textural and structural properties of catalyst were obtained. The catalytic results reveal that the presence of GaN increases the activity of the catalysts, indicating that GaN can be used as a new active phase for the ODH of n‐butane. XRD, XPS, O2‐TPD, DLS, TEM, and in‐situ FTIR results show that activated O species exist on the surface of the GaN catalyst and enhance the catalytic performance with a decreasing GaN particle size, suggesting that smaller GaN particles possess a remarkable capability to activate O species in O2 and C‐H bonds in light alkanes.  相似文献   

10.
Chlorosulfonylated polystyrene, a commodity resin, reacts with enantiopure 1,2‐diamines to afford, in a single step, high loading catalytic resins involving monosulfonylated 1,2‐diamino moieties. These functional polymers form stable (p‐cymene)ruthenium chloride [RuCl(p‐cymene)] complexes that efficiently catalyze (down to S/C=150) the asymmetric transfer hydrogenation (ATH) of alkyl aryl ketones with formic acid‐triethylamine under essentially solvent‐free (down to 0.25 mL mmol−1) reaction conditions. Among these resins, the immobilized version of TsDPEN stands out as a most practical catalyst for ATH: Uniformly high enantioselectivities are achieved with its use at low catalyst loading, and the resin can be recycled with virtually no limits.  相似文献   

11.
A new reactor concept is studied for highly endothermic heterogeneously catalysed gas phase reactions at high temperatures with rapid but reversible catalyst deactivation. The reactor concept aims to achieve an indirect coupling of energy necessary for endothermic reactions and energy released by exothermic reactions, without mixing of the endothermic and exothermic reactants, in closed-loop reverse flow operation. Periodic gas flow reversal incorporates regenerative heat exchange inside the reactor. The reactor concept is studied for the coupling between the non-oxidative propane dehydrogenation and methane combustion over a monolithic catalyst.Two different reactor configurations are considered: the sequential reactor configuration, where the endothermic and exothermic reactants are fed sequentially to the same catalyst bed acting as an energy repository and the simultaneous reactor configuration, where the endothermic and exothermic reactants are fed continuously to two different compartments directly exchanging energy. The dynamic reactor behaviour is studied by detailed simulation for both reactor configurations. Energy constraints, relating the endothermic and exothermic operating conditions, to achieve a cyclic steady state are discussed. Furthermore, it is indicated how the operating conditions should be matched in order to control the maximum temperature. Also, it is shown that for a single first order exothermic reaction the maximum dimensionless temperature in reverse flow reactors depends on a single dimensionless number. Finally, both reactor configurations are compared based on their operating conditions. It is shown that only in the sequential reactor configuration the endothermic inlet concentration can be optimised independently of the gas velocities at high throughput and maximum reaction coupling energy efficiency, by the choice of a proper switching scheme with inherently zero differential creep velocity and using the ratio of the cycle times.In this first part, both the propane dehydrogenation and the methane combustion have been considered as first order irreversible reactions. However, the propane dehydrogenation is an equilibrium reaction and the low exit temperatures resulting from the reverse flow concept entail considerable propane conversion losses. How this ‘back-conversion’ can be counteracted is discussed in part II Chemical Engineering Science, 57, (2002), 855-872.  相似文献   

12.
《Catalysis Reviews》2013,55(2):151-161
Abstract

The latest state‐of‐the‐art innovation in realistic fluid catalytic cracking (FCC) catalyst testing is the short contact time resid test (SCTRT). This unit has been especially developed for residual hydrocarbon feed and solves limitations of other lab‐scale testing units by allowing instantaneous mixing (injection time of 1 second) of catalyst and feed. Its unique features make the SCTRT an excellent tool for catalyst development and for screening and evaluating FCC short contact time operations in the laboratory.  相似文献   

13.
The role of room‐temperature ionic liquids (RTILs), [bmim][PF6] and [bmim][Tf2N], as reaction media regarding the catalytic activity and stability of methyltrioxorhenium (MTO) supported on ZnCl2‐modified mesoporous Al2O3 has been studied for self‐metathesis of a functionalized olefin, methyl oleate. The humidity influence on the catalytic activity was probed. The catalyst recycling ability and the kinetics of the metathesis reaction using these RTILs were also investigated. It was found that the MTO‐based catalyst was efficient in viscous hydrophobic RTIL solvents. However, their high viscosity was found to increase the mass transfer limitations thus somewhat impacting the reaction kinetics. Nevertheless, better catalyst stability was reached allowing its possible recycling when used in RTIL media.  相似文献   

14.
The oxidative dehydrogenation of a 1‐butene/trans‐butene (1:1) mixture to 1,3‐butadiene was carried out in a two‐zone fluidized bed reactor using a Mo‐V‐MgO and a γ‐Bi2MoO6 catalyst. The significant operating conditions temperature, oxygen/butene molar ratio, butene inlet height, and flow velocity were varied to gain high 1,3‐butadiene selectivity and yield. Furthermore, axial concentration profiles were measured inside the fluidized bed to gain insight into the reaction network in the two zones. For optimized conditions and with a suitable catalyst, the two‐zone fluidized bed reactor makes catalyst regeneration and catalytic reaction possible in a single vessel. In the lower part of the fluidized bed, the oxidation of coke deposits on the catalyst as well as the filling of oxygen vacancies in the lattice can occur. The oxidative dehydrogenation reaction takes place in the upper zone. Thorough particle mixing inside fluidized beds causes permanent particle exchange between both zones. © 2016 American Institute of Chemical Engineers AIChE J, 63: 43–50, 2017  相似文献   

15.
A catalytic method with Zr(O‐t‐Bu)4 as the catalyst and tert‐butyl hydroperoxide as the oxidant is described to cleave phenylhydrazones 6—9 , 14—16 to the parent carbonyl compounds under mild and neutral oxidative conditions.  相似文献   

16.
A heat‐effective ‘integrated’ process of C2H4 production, incorporating exothermic oxidative coupling of methane (OCM) carried out in the catalytic section of a flow tubular reactor, and endothermic pyrolysis of naphtha carried out in the postcatalytic section of the same reactor, studied earlier in a small silica reactor, was examined now in a scaled‐up unit with a stainless‐steel (1H18N9T) reactor (volume 400 cm3, Li/MgO catalyst bed 165 cm3). It was demonstrated that depending on the operating conditions, such an integrated process could be realized over a wide range of the relative contribution of the two component processes, leading always to an increase in the C2H4 yield, as compared with OCM or pyrolysis alone. A high degree of additivity of the yields of all products was observed in all cases, independently of the relative contribution of OCM and pyrolysis. Such results indicated that in the scaled‐up unit with a stainless‐steel reactor, the interactions between the component processes and products were only negligible under experimental conditions. The overall balance of CH4, being consumed in OCM and formed in pyrolysis, was negative, equal to zero, or positive, depending on the relative contribution of the component processes. The integrated process could be based, therefore, either on CH4 and naphtha as raw materials or exclusively on naphtha, with the recirculation of the excess of CH4 to the OCM section. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Molecular hydrogen is the simplest and most abundant compound in the universe and is involved in numerous industrial chemical processes. In conventional chemistry, dihydrogen typically plays the role of a reductant and a reagent for homogeneous and heterogeneous hydrogenation processes such as the industrial and enzymatic ammonia formation, reduction of metallic ores and hydrogenation of unsaturated fats and oils. However, there are also processes in which molecular hydrogen participates as promoter, and even as catalyst. The catalytic role of the dihydrogen in free-valence migration in irradiated polymers and the interstellar isomerization of the formyl cation (protonated carbon monoxide) are well-documented examples of such processes. Recently, this issue has received new attention. Dihydrogen has been shown to play the role of a dehydrogenation catalyst (involving particularly metallocomplexes and inorganic materials), a relay (pass-on) transfer molecular agent and a transporter of protons.

This review article, combined with original results, is focused on the mechanisms of the chemical processes where dihydrogen demonstrates catalytic behavior. We will call these processes (with somewhat broader meaning of the term) “dihydrogen catalysis” (DHC) which also includes the reactions mediated by transition metal dihydrides. Dihydrides are tentatively considered as pre-activated dihydrogen, coordinated to a metal center or implanted into a solid surface/support.

DHC reactions are classified into five major reaction types: (i) dihydrogen-assisted relay transport of H-atoms (H2-RT); (ii) dihydrogen-assisted stepwise relay transport of H-atoms or of a free valence (sH2-RT); (iii) dihydrogen-assisted proton transport (H2-PT); (iv) dihydrogen-assisted dehydrogenation (H2-DeH); and (v) pre-activated dehydrogenation (PA-DeH). The classification of these mechanisms is based on a detailed analysis of numerous potential energy surfaces studied by DFT and ab initio methods in conjunction with available experimental data. The H2-RT, H2-DeH, and PA-DeH processes occur via cyclic transition states. The relay H2-RT transport involves the H-H-H triad linked to both H-donor and H-acceptor centers, whereas the transition state ring in the H2-DeH dehydrogenation processes involves a H-H-H-H tetrad with the dihydrogen catalyst located in the middle. The H2-PT mechanism provides the transport of a proton mediated by dihydrogen combined in a triangular (H3+)-carrier unit.

There are also practically important processes stimulated by dihydrogen such as the hydrogen spillover and hydrogen build-up in electronics, in which the catalytic role of dihydrogen is ambiguous, either because of the uncertainties in mechanisms, or prevailing traditional views. Some examples are briefly discussed in the framework of the concept of dihydrogen catalysis, some being provided with theoretical support (in part calculated by us), and others being merely hypothesized to provide suggestions to an interested reader.  相似文献   


18.
Monolithic Ni‐Al2O3/Ni‐foam catalyst is developed by modified wet chemical etching of Ni‐foam, being highly active/selective and stable in strongly exothermic CO2 methanation process. The as‐prepared catalysts are characterized by x‐ray diffraction scanning electron microscopy, inductively coupled plasma atomic emission spectrometry, and H2‐temperature programmed reduction‐mass spectrometry. The results indicate that modified wet chemical etching method is working efficiently for one‐step creating and firmly embedding NiO‐Al2O3 composite catalyst layer (~2 μm) into the Ni‐foam struts. High CO2 conversion of 90% and high CH4 selectivity of >99.9% can be obtained and maintained for a feed of H2/CO2 (molar ratio of 4/1) at 320°C and 0.1 MPa with a gas hourly space velocity of 5000 h?1, throughout entire 1200 h test over 10.2 mL such monolithic catalysts. Computational fluid dynamics calculation and experimental measurement consistently confirm a dramatic reduction of “hotspot” temperature due to enhanced heat transfer. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4323–4331, 2015  相似文献   

19.
Chemoselective reduction of α,βunsaturated carbonyls to the corresponding alcohols was achieved by a catalytic transfer hydrogenation (CTH) method using cobalt(II)‐substituted hexagonal mesoporous aluminophosphate (CoHMA) molecular sieve catalyst. Further, the catalyst was found to be promising as a heterogeneous catalyst as the yield was practically unchanged after up to six cycles.  相似文献   

20.
For propene epoxidation with H2 and O2, the catalytic performance of Au/TS‐1 catalyst is extremely sensitive to preparation parameters of deposition‐precipitation (DP) method. In this work, effect of charging sequence in DP process on catalyst structure and catalytic performance of Au/TS‐1 catalyst is first investigated. For different charging sequences, the compositions of Au complexes (e.g., [AuCl(OH)3]?) and pore property of TS‐1 (i.e., with or without H2O prefilling micropores) could affect the transfer of Au complexes into the micropores, resulting in different Au locations and thus significantly different catalytic performance. Notably, when TS‐1 is first filled with H2O and then mixed with Au complexes, the reduced Au/TS‐1 catalyst could expose Au nanoparticles on the external surface of TS‐1 and show high stability. The results provide direct evidence showing that micropore blocking is the deactivation mechanism. Based on the results, a simple strategy to design highly stable Au/Ti‐based catalysts is developed. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3963–3972, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号