首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustained-release (SR) theophylline (TPH) tablets were prepared by applying the moisture-activated dry granulation method. The interaction between the excipients sodium alginate (SAL) and calcium gluconate (CG) was the base for the formation of a cross-linked matrix that may regulate TPH release from the formulated tablets. The prepared granules showed good physical characteristics concerning the flow properties and compressibility, with the angles of repose in the range 29-31, and the compressibility indices ranged between 15% and 25%. The granules had low friability values (3.0%-4.2%), depending on SAL:CG ratios. The corresponding tablets showed good physical properties, with a lower rate of drug release compared with the commercial TPH tablets (Quibron®). The release of TPH from the prepared tablets was not markedly affected by either the concentration of added dry binder (carbopol 934) or the tablet hardness, indicating that the rate-determining step in drug release was the diffusion through the produced calcium alginate matrix. Tablets formulated with equal ratios of CG and SAL that showed good physical properties and slow TPH release were chosen for bioavailability studies in beagle dogs, and results were compared with those for Quibron. The in vivo data showed a comparable plasma concentration profile for both tablet formulations, with prolonged appearance of drug in the plasma in detectable amounts for up to 24 h. The formulated tablets showed 104.65% bioavailability relative to that of the commercial tablets. The rate and extent of absorption of TPH showed no significant differences from that of the commercial tablets. Moreover, no significant differences were found in the pharmacokinetic parameters related to the rate and extent of TPH absorption from the prepared and commercial tablets.  相似文献   

2.
The major objectives of this study were to monitor the effect of cross-linking of cationic chitosan in acidic media with sulfate anion during granules preparation by wet granulation method prior to tableting using theophylline (TPH) as a model drug. The prepared granules and the compressed tablets were subjected to in vitro evaluation. The properties of the prepared matrix granules and the compressed tablets were dependent on chitosan:sodium sulfate weight ratios, chitosan content, and molecular weight of chitosan. The prepared granules of all batches showed excellent to passable flowability and were suitable for compression into tablets. Most of the granules were hard and expected to withstand handling during the subsequent compression into tablets. Granules with high friabilities were only those prepared with a high amount of sodium sulfate or low amount of chitosan. Compression of granule batches yield nondisintegrating tablets that showed a decrease in tensile strength with the increase of sodium sulfate content at high chitosan:sodium sulfate weight ratio or with decrease of chitosan content. On the other hand, friability of tablets was increased in the presence of an excessive amount of sodium sulfate and low chitosan content as observed with granules. Slow TPH release from the formulated tablets was achieved at 1:0.5 and 1:1 chitosan:sodium sulfate weight ratios where all or most of the cationic chitosan and sulfate anions were used in a cross-linking reaction during wet granulation. Ratios of 1:2 and 1:3 showed fast drug release, which support the hypothesis that excessive unreacted water-soluble sodium sulfate might increase the porosity of the nondesintegrating tablets during dissolution. Slow drug release was also obtained with high molecular weight chitosan, whereas changing the hardness of the tablets did not significantly change the release profile of the drug as long as the tablets are intact during dissolution. Furthermore, slow drug release was observed as the total amount of chitosan was increased in the formulated tablets. A comparative in vivo study between the chosen formulated tablets (1:1 chitosan:sodium sulfate ratio that contains 10% high molecular weight chitosan) and the commercial Quibron® tablets indicated prolonged appearance of the drug in dogs' plasma for both formulations with no significant differences (p > 0.05) in rate and extent of drug absorption. The formulated tablets showed 103.16% bioavailability relative to that of the commercial tablets.  相似文献   

3.
The major objectives of this study were to monitor the effect of cross-linking of cationic chitosan in acidic media with sulfate anion during granules preparation by wet granulation method prior to tableting using theophylline (TPH) as a model drug. The prepared granules and the compressed tablets were subjected to in vitro evaluation. The properties of the prepared matrix granules and the compressed tablets were dependent on chitosan:sodium sulfate weight ratios, chitosan content, and molecular weight of chitosan. The prepared granules of all batches showed excellent to passable flowability and were suitable for compression into tablets. Most of the granules were hard and expected to withstand handling during the subsequent compression into tablets. Granules with high friabilities were only those prepared with a high amount of sodium sulfate or low amount of chitosan. Compression of granule batches yield nondisintegrating tablets that showed a decrease in tensile strength with the increase of sodium sulfate content at high chitosan:sodium sulfate weight ratio or with decrease of chitosan content. On the other hand, friability of tablets was increased in the presence of an excessive amount of sodium sulfate and low chitosan content as observed with granules. Slow TPH release from the formulated tablets was achieved at 1:0.5 and 1:1 chitosan:sodium sulfate weight ratios where all or most of the cationic chitosan and sulfate anions were used in a cross-linking reaction during wet granulation. Ratios of 1:2 and 1:3 showed fast drug release, which support the hypothesis that excessive unreacted water-soluble sodium sulfate might increase the porosity of the nondesintegrating tablets during dissolution. Slow drug release was also obtained with high molecular weight chitosan, whereas changing the hardness of the tablets did not significantly change the release profile of the drug as long as the tablets are intact during dissolution. Furthermore, slow drug release was observed as the total amount of chitosan was increased in the formulated tablets. A comparative in vivo study between the chosen formulated tablets (1:1 chitosan:sodium sulfate ratio that contains 10% high molecular weight chitosan) and the commercial Quibron tablets indicated prolonged appearance of the drug in dogs' plasma for both formulations with no significant differences (p > 0.05) in rate and extent of drug absorption. The formulated tablets showed 103.16% bioavailability relative to that of the commercial tablets.  相似文献   

4.
The objective of this study was to develop an effective omeprazole buccal adhesive tablet with excellent bioadhesive force and good drug stability in human saliva. The omeprazole buccal adhesive tablets were prepared with various bioadhesive polymers, alkali materials, and croscarmellose sodium. Their physicochemical properties, such as bioadhesive force and drug stability in human saliva, were investigated. The release and bioavailability of omeprazole delivered by the buccal adhesive tablets were studied. As bioadhesive additives for the omeprazole tablet, a mixture of sodium alginate and hydroxypropylmethylcellulose (HPMC) was selected. The omeprazole tablets prepared with bioadhesive polymers alone had bioadhesive forces suitable for a buccal adhesive tablet, but the stability of omeprazole in human saliva was not satisfactory. Among alkali materials, only magnesium oxide could be an alkali stabilizer for omeprazole buccal adhesive tablets due to its strong waterproofing effect. Croscarmellose sodium enhanced the release of omeprazole from the tablets; however, it decreased the bioadhesive forces and stability of omeprazole tablets in human saliva. The tablet composed of omeprazole/sodium alginate/HPMC/magnesium oxide/croscarmellose sodium (20/24/6/50/10 mg) could be attached on the human cheek without disintegration, and it enhanced the stability of omeprazole in human saliva for at least 4 h and gave fast release of omeprazole. The plasma concentration of omeprazole in hamsters increased to a maximum of 370 ng/ml at 45 min after buccal administration and continuously maintained a high level of 146–366 ng/ml until 6 h. The buccal bioavailability of omeprazole in hamsters was 13.7% ± 3.2%. These results demonstrate that the omeprazole buccal adhesive tablet would be useful for delivery of an omeprazole that degrades very rapidly in acidic aqueous medium and undergoes hepatic first-pass metabolism after oral administration.  相似文献   

5.
The objective of this study was to develop an effective omeprazole buccal adhesive tablet with excellent bioadhesive force and good drug stability in human saliva. The omeprazole buccal adhesive tablets were prepared with various bioadhesive polymers, alkali materials, and croscarmellose sodium. Their physicochemical properties, such as bioadhesive force and drug stability in human saliva, were investigated. The release and bioavailability of omeprazole delivered by the buccal adhesive tablets were studied. As bioadhesive additives for the omeprazole tablet, a mixture of sodium alginate and hydroxypropylmethylcellulose (HPMC) was selected. The omeprazole tablets prepared with bioadhesive polymers alone had bioadhesive forces suitable for a buccal adhesive tablet, but the stability of omeprazole in human saliva was not satisfactory. Among alkali materials, only magnesium oxide could be an alkali stabilizer for omeprazole buccal adhesive tablets due to its strong waterproofing effect. Croscarmellose sodium enhanced the release of omeprazole from the tablets; however, it decreased the bioadhesive forces and stability of omeprazole tablets in human saliva. The tablet composed of omeprazole/sodium alginate/HPMC/magnesium oxide/croscarmellose sodium (20/24/6/50/10 mg) could be attached on the human cheek without disintegration, and it enhanced the stability of omeprazole in human saliva for at least 4 h and gave fast release of omeprazole. The plasma concentration of omeprazole in hamsters increased to a maximum of 370 ng/ml at 45 min after buccal administration and continuously maintained a high level of 146-366 ng/ml until 6 h. The buccal bioavailability of omeprazole in hamsters was 13.7% ± 3.2%. These results demonstrate that the omeprazole buccal adhesive tablet would be useful for delivery of an omeprazole that degrades very rapidly in acidic aqueous medium and undergoes hepatic first-pass metabolism after oral administration.  相似文献   

6.
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 23 full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the Tmax was prolonged (from 0.65 ± 0.082 hr to 4.83 ± 1.60 hr) and AUC0–t (from 734.88 ± 230.68 ng/ml.hr to 1153.34 ± 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.  相似文献   

7.
The release rate and mechanism of release of mebeverine hydrochloride were studied for commercial “Duspatalin” tablets and for different tablet formulations (F1, F2 & F3) containing 20, 40 and 65% polycarbophil, respectively. The formulated granules were obtained by freeze drying of polycarbophil granules loaded with aqueous solution of the drug at 25°C by swelling of the polymer. The release of mebeverine hydrochloride from prepared tablet formulations was faster than that of Duspatalin tablets. The release rate of the drug increased as the polycarbophil content of the tablets increased. The calculated correlation coefficients for the release data fitted to various models showed that the release from Duspatalin tablets and F2 follow first order kinetics, while release of F1 approaches that of zero order. The release mechanism from F3 could not be determined. DSC thermograms showed that there is an interaction between the drug and the polymer in aqueous medium, but not in the solid state.

The in-vivo guinea-pig studies revealed that mebeverine hydrochloride was released and absorbed from the tested formula (F3), depressed the agonists-induced contractions 2 hrs after treatment but not after 4 hrs indicating rapid absorption and metabolism. The percentage inhibitions ranged from 40-85%. The treatment seems to antagonise barium chloride (BaCl2)-induced contractions more than those induced by carbochol.  相似文献   

8.
The release rate and mechanism of release of mebeverine hydrochloride were studied for commercial “Duspatalin” tablets and for different tablet formulations (F1, F2 & F3) containing 20, 40 and 65% polycarbophil, respectively. The formulated granules were obtained by freeze drying of polycarbophil granules loaded with aqueous solution of the drug at 25°C by swelling of the polymer. The release of mebeverine hydrochloride from prepared tablet formulations was faster than that of Duspatalin tablets. The release rate of the drug increased as the polycarbophil content of the tablets increased. The calculated correlation coefficients for the release data fitted to various models showed that the release from Duspatalin tablets and F2 follow first order kinetics, while release of F1 approaches that of zero order. The release mechanism from F3 could not be determined. DSC thermograms showed that there is an interaction between the drug and the polymer in aqueous medium, but not in the solid state.

The in-vivo guinea-pig studies revealed that mebeverine hydrochloride was released and absorbed from the tested formula (F3), depressed the agonists-induced contractions 2 hrs after treatment but not after 4 hrs indicating rapid absorption and metabolism. The percentage inhibitions ranged from 40–85%. The treatment seems to antagonise barium chloride (BaCl2)-induced contractions more than those induced by carbochol.  相似文献   

9.
Objective: To develop mucoadhesive tablets for the vaginal delivery of progesterone (P4) to overcome its low oral bioavailability resulting from drug hydrophobicity and extensive hepatic metabolism.

Methods: The tablets were prepared using mixtures of P4/Pluronic® F-127 solid dispersion and different mucoadhesive polymers. The tablets physical properties, swelling index, mucoadhesion and drug release kinetics were evaluated. P4 pharmacokinetic and pharmacodynamic properties were evaluated in female rabbits and compared with vaginal micronized P4 tablets and intramuscular (IM) P4 injection, respectively.

Results: The tablets had satisfactory physical properties and their swelling, in vitro mucoadhesion force and ex vivo mucoadhesion time were dependent on tablet composition. Highest swelling index and mucoadhesion time were detected for tablets containing 20% chitosan-10% alginate mixture. Most tablets exhibited burst release (~25%) during the first 2?h but sustained the drug release for ~48?h. In vivo study showed that chitosan-alginate mucoadhesive tablets had ~2-fold higher P4 mean residence time (MRT) in the blood and 5-fold higher bioavailability compared with oral P4. Further, same tablets showed 2-fold higher myometrium thickness in rabbit uterus compared with IM P4 injection.

Conclusion: These results confirm the potential of these mucoadhesive vaginal tablets to enhance P4 efficacy and avoid the side effects associated with IM injection.  相似文献   

10.
Abstract

Commercially available domperidone orodispersible tablets (ODT) are intended for immediate release of the drug, but none of them have been formulated for sustained action. The aim of the present research work was to develop and evaluate orodispersible sustained release tablet (ODT-SR) of domperidone, which has the convenience of ODT and benefits of controlled release product combined in one. The technology comprised of developing sustained release microspheres (MS) of domperidone, followed by direct compression of MS along with suitable excipients to yield ODT-SR which rapidly disperses within 30?seconds and yet the dispersed MS maintain their integrity to have a sustained drug release. The particle size of the MS was optimized to be less than 200?μm to avoid the grittiness in the mouth. The DSC thermograms of MS showed the absence of drug-polymer interaction within the microparticles, while SEM confirmed their spherical shape and porous nature. Angle of repose, compressibility and Hausner’s ratio of the blend for compression showed good flowability and high percent compressibility. The optimized ODT-SR showed disintegration time of 21?seconds and matrix controlled drug release for 9?h. In-vivo pharmacokinetic studies in Wistar rats showed that the ODT-SR had a prolonged MRT of 11.16?h as compared 3.86?h of conventional tablet. The developed technology is easily scalable and holds potential for commercial exploitation.  相似文献   

11.
Abstract

Chloroquine phosphate suppositories were formulated using witepsol H15 as a model base. The physicomechanical properties of the prepared suppositories were studied. In-vitro drug release as well as in-vivo availability were determined and compared with those from commercial tablets containing the same dose of the drug (250 mg). In addition, the effect of pH of the different segments of GIT on the partition coefficient of the drug was tested

Results revealed that formulated suppositories exhibit good mechanical properties as well as high release characteristics. Volunteers received suppositories showed urine peak level after 2 hrs while with those administered the tablets the peak was reached after 3 hrs. The total amounts released were 60% and 48% from the administered dose in case of suppositories and tablets respectively. The higher bioavailability of the medicament after rectal therapy is explained on the basis of the partition coefficient data. The obtained values were 0.667, 0.941 and 5.333 at pH 1.2, 6.8 and 7.4 respectively. Volunteers used the formulated suppositories did not suffer from any GI irritation which is accompanying the oral administration of the drug. The proposed formula had no irritating effect on the rectum  相似文献   

12.
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 23 full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the Tmax was prolonged (from 0.65 ± 0.082 hr to 4.83 ± 1.60 hr) and AUC0-t (from 734.88 ± 230.68 ng/ml.hr to 1153.34 ± 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.  相似文献   

13.
A multiple-unit floating alginate bead drug delivery system with prolonged stomach retention time was developed in this study. The floating alginate beads were prepared by ionic cross-linking method, using CaCO3 as the gas-forming agent. Over 92% of the beads remained floating after 9?h. In order to prepare sustained-release dosage forms of dipyridamole, the solid dispersion technique was applied using a blend of Eudragit L100 and Eudragit RLPO. Afterwards, the solid dispersions of dipyridamole were incorporated into the floating alginate beads. The drug release was modified by changing the ratio of Eudragit RLPO and Eudragit L100 in the solid dispersions. The in vivo results showed that the relative bioavailability of alginate beads was enhanced by approximately 2.52-fold compared with that of the commercial tablet. Therefore, our study illustrated the potential use of floating alginate beads combined with the solid dispersion technique for the delivery of acid-soluble compounds, such as dipyridamole.  相似文献   

14.
A nanoparticulate system; cubosomes has been suggested to support the controlled release of Telmisartan (TEL), a poorly water-soluble medication. Four distinctive formulae were selected according to the results of three estimated responses. The liquid cubosomes were successfully adsorbed onto Aerosil 380 to form granules. The formulae were evaluated for their flow properties. The best granules were compressed into tablets suitable for oral administration. The tablets were evaluated for its performance. The in vivo study of the best selected cubosomal tablets was checked after oral administration in the blood of albino rabbits utilizing an HPLC method. Results revealed that the highest EE was shown in formulae C5 (59.68?±?1.3). All the prepared formulae had particle size less than 500?nm with PDI < 0.5 and the highest zeta potential results were observed in C5, C7, C9, C11 and C12 (>30?mv). A7 and A9 prepared using Aerosil 380 showed a perfect flowability. After 1?h of dissolution testing, the commercial product showed a 66% drug release while the release of all cubosomal formulae didn’t exceed 35% during the first hour reaching a 85% of the drug released at the end of 24?h. A7 was selected for the in vivo study; Tmax of TEL absorption is increased for cubosomal formula by three folds indicating sustained release pattern. The relative bioavailability is also increased by 2.6 fold. The investigation proposed the rationality of cubosome to figure an effective controlled release tablets to improve its bioavailability and expand its activity.  相似文献   

15.
Sustained release beads of ibuprofen were prepared by a capillary method using cellulose acetate phthalate, surfactants (Tween 80 and Span 80), and polymers (K 100 M Methocel and K 100 LV Methocel). These beads were formulated into capsule and tablet dosage forms. The beads did not disintegrate in simulated gastric fluid; however, they disintegrated in simulated intestinal fluid. The dissolution profiles of ibuprofen beads and dosage forms of beads (tablets and capsules) were conducted in phosphate buffer (pH 7.2) at 37°C. The beads containing Span 80 and K 100 M Methocel resulted in prolonged drug release. The preparation containing Span 80 and equal quantities of both the polymers (K 100 M Methocel and K 100 LV Methocel), also showed good sustained release properties. The formulations prepared with Tween 80 and K 100 LV Methocel released over 90% of the drug in 2 hours indicating no sustained release properties. The beads in tablet dosage form yielded slower dissolution profiles compared to the beads in capsule form which, in turn, had slower release profiles compared to the beads alone. Release of ibuprofen was much slower from tablets after one year of storage compared to tablets immediately after their manufacture.  相似文献   

16.
Sustained release beads of ibuprofen were prepared by a capillary method using cellulose acetate phthalate, surfactants (Tween 80 and Span 80), and polymers (K 100 M Methocel and K 100 LV Methocel). These beads were formulated into capsule and tablet dosage forms. The beads did not disintegrate in simulated gastric fluid; however, they disintegrated in simulated intestinal fluid. The dissolution profiles of ibuprofen beads and dosage forms of beads (tablets and capsules) were conducted in phosphate buffer (pH 7.2) at 37°C. The beads containing Span 80 and K 100 M Methocel resulted in prolonged drug release. The preparation containing Span 80 and equal quantities of both the polymers (K 100 M Methocel and K 100 LV Methocel), also showed good sustained release properties. The formulations prepared with Tween 80 and K 100 LV Methocel released over 90% of the drug in 2 hours indicating no sustained release properties. The beads in tablet dosage form yielded slower dissolution profiles compared to the beads in capsule form which, in turn, had slower release profiles compared to the beads alone. Release of ibuprofen was much slower from tablets after one year of storage compared to tablets immediately after their manufacture.  相似文献   

17.
Xanthan Gum and Alginate Based Controlled Release Theophylline Formulations   总被引:1,自引:0,他引:1  
The oral absorption of theophylline from two sustained release formulations, formulated using xanthan gum or sodium alginate, has been investigated in the beagle dog. A commercial product was used for comparison. Dissolution tests and an in vivo dog study both indicated that the xanthan gum tablet released drug at a constant rate and performed as a pH independent zero-order controlled release formulation. With the alginate tablet, faster dissolution rates were observed when acid medium was present. The pH dependent release behavior of the alginate formulation is explained. Drug release mechanisms which are influenced by the gel behaviors in these two polymers are discussed. The relative oral bioavailabilities of these two formulations in dog were 74-84% compared to immediately releasing capsules, and three-fold that of the commercial product with an equivalent dose.  相似文献   

18.
Abstract

The oral absorption of theophylline from two sustained release formulations, formulated using xanthan gum or sodium alginate, has been investigated in the beagle dog. A commercial product was used for comparison. Dissolution tests and an in vivo dog study both indicated that the xanthan gum tablet released drug at a constant rate and performed as a pH independent zero-order controlled release formulation. With the alginate tablet, faster dissolution rates were observed when acid medium was present. The pH dependent release behavior of the alginate formulation is explained. Drug release mechanisms which are influenced by the gel behaviors in these two polymers are discussed. The relative oral bioavailabilities of these two formulations in dog were 74–84% compared to immediately releasing capsules, and three-fold that of the commercial product with an equivalent dose.  相似文献   

19.
Weakly basic drugs demonstrate higher solubility at lower pH, thus often leading to faster drug release at lower pH. The objective of this study was to achieve pH-independent release of weakly basic drugs from extended release formulations based on the naturally occurring polymer sodium alginate. Three approaches to overcome the pH-dependent solubility of the weakly basic model drug verapamil hydrochloride were investigated. First, matrix tablets were prepared by direct compression of drug substance with different types of sodium alginate only. Second, pH-modifiers were added to the drug/alginate matrix systems. Third, press-coated tablets consisting of an inner pH-modifier tablet core and an outer drug/sodium alginate coat were prepared. pH-Independent drug release was achieved from matrix tablets consisting of selected alginates and drug substance only. Alginates are better soluble at higher pH. Therefore, they are able to compensate the poor solubility of weakly basic drugs at higher pH as the matrix of the tablets dissolves faster. This approach was successful when using alginates that demonstrated fast hydration and erosion at higher pH. The approach failed for alginates with less-pronounced erosion at higher pH. The addition of fumaric acid to drug/alginate-based matrix systems decreased the microenvironmental pH within the tablets thus increasing the solubility of the weakly basic drug at higher pH. Therefore, pH-independent drug release was achieved irrespective of the type of alginate used. Drug release from press-coated tablets did not provide any further advantages as compound release remained pH-dependent.  相似文献   

20.
Weakly basic drugs demonstrate higher solubility at lower pH, thus often leading to faster drug release at lower pH. The objective of this study was to achieve pH-independent release of weakly basic drugs from extended release formulations based on the naturally occurring polymer sodium alginate. Three approaches to overcome the pH-dependent solubility of the weakly basic model drug verapamil hydrochloride were investigated. First, matrix tablets were prepared by direct compression of drug substance with different types of sodium alginate only. Second, pH-modifiers were added to the drug/alginate matrix systems. Third, press-coated tablets consisting of an inner pH-modifier tablet core and an outer drug/sodium alginate coat were prepared. pH-Independent drug release was achieved from matrix tablets consisting of selected alginates and drug substance only. Alginates are better soluble at higher pH. Therefore, they are able to compensate the poor solubility of weakly basic drugs at higher pH as the matrix of the tablets dissolves faster. This approach was successful when using alginates that demonstrated fast hydration and erosion at higher pH. The approach failed for alginates with less-pronounced erosion at higher pH. The addition of fumaric acid to drug/alginate-based matrix systems decreased the microenvironmental pH within the tablets thus increasing the solubility of the weakly basic drug at higher pH. Therefore, pH-independent drug release was achieved irrespective of the type of alginate used. Drug release from press-coated tablets did not provide any further advantages as compound release remained pH-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号