首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fuels and Energy for the Future: The Role of Catalysis   总被引:1,自引:0,他引:1  
There are many reasons to decrease the dependency on oil and to increase the use of other energy sources than fossil fuels. The wish for energy security is balanced by a wish for sustainable growth. Catalysis plays an important role in creating new routes and flexibility in the network of energy sources, energy carriers, and energy conversion. The process technologies resemble those applied in the large scale manufacture of commodities. This is illustrated by examples from refinery fuels, synfuels, and hydrogen and the future role of fossil fuels is discussed.  相似文献   

2.
Power generation from renewable energy sources and fossil fuels are integrated into one system. A combination of technologies in the form of a carbon capture utilization (CCU)-combined power station is proposed. The technology is based on energy generation from fossil fuels by a coal power plant with CO2 recovery from exhaust gases, and pyrolysis of natural gas to hydrogen and carbon, completed by reverse water-gas shift for the conversion of CO2 to CO, which will react with hydrogen in a Fischer-Tropsch synthesis for synthetic diesel. The carbon from the pyrolysis can replace other fossil carbon or can be sequestered. This technology offers significant CO2 savings compared to the current state of technology and makes an environmentally friendly use of fossil fuels for electricity and fuel sectors possible.  相似文献   

3.
刘化章 《工业催化》2011,19(6):1-12
在一次能源转化成二次能源特别是煤制清洁燃料和化工原料的转化过程中,催化转化起重要作用.催化是解决能源问题的关键技术.介绍了化石能源、新能源和可再生能源转换过程中的催化作用以及煤制清洁燃料和化工原料的关键技术,指出催化是解决能源问题的关键技术,对煤制清洁燃料和化工原料的发展提出思考和建议.  相似文献   

4.
The concept of complementary decarbonisation of power generation from renewable energy sources and fossil fuels consists of their integration in one system. A technology network in the form of a CCU‐combined power plant is proposed for the energy generation from fossil fuels by a coal power plant with CO2 recovery from the exhaust gases and a pyrolysis of natural gas to hydrogen and carbon as a basic technology. This technology network is completed by a reverse water‐gas shift reaction for the conversion of the CO2 to CO, which will react with the hydrogen in a Fischer‐Tropsch synthesis for synthetic diesel. The recovered energy from the exothermic Fischer‐Tropsch synthesis meets the energy needs of CO2 scrubbing. The carbon from the pyrolysis can replace other fossil carbon or can be sequestered.  相似文献   

5.
The shortage of fossil fuels restricts the world supply of reduced carbon compounds and energy sources. Biotechnology offers the most feasible route to renewing the supplies of reduced carbon compounds. This involves recycling of CO2 through photosynthesis. Conventional agriculture has little or no potential for supplying biomass and its derivatives on sufficient scale to offer an alternative to the fossil fuels. The agricultural wastes, on the whole, are intractable to conversion into useful carbon and energy sources and in any case are not available in amounts to provide a significant alternative to the fossil fuels. In contrast, microbial photosynthesis, optimised in photobioreactors, has vast potential to provide organic matter on a scale to match the consumption of fossil fuels. The quantitative study of microbial photosynthesis as a biotechnological route to biomass has been neglected. As a result there is a chaos of conflicting data on fundamental parameters, for example, the photosynthetic efficiency of biomass production. New photosynthetic biotechnology with fully controlled continuous-culture systems is providing unequivocal values for the parameters. For the scale-up of microbial photosynthesis a tubular-loop reactor is proposed.  相似文献   

6.
Large-Scale Hydrogen Production   总被引:3,自引:0,他引:3  
There is a growing need for hydrogen in processing heavier and dirtier fossil fuels and a future hydrogen economy is widely suggested as the next generation fuel/energy source once fossil fuels diminish in availability. Sustainable fuels are still regarded as too expensive given the large amounts of natural gas and a projected, ample supply of fossil fuels beyond the next twenty-plus years. Today, the steam reforming of hydrocarbons is the most favorable route to H2. If CO2 sequestration were ever to become widely practiced, fossil fuels would continue to play an important role in the future hydrogen economy.  相似文献   

7.
The rapid increase in energy demand, the extensive use of fossil fuels and the urgent need to reduce the carbon dioxide emissions have raised concerns in the transportation sector. Alternate renewable and sustainable sources have become the ultimate solution to overcome the expected depletion of fossil fuels.The conversion of lignocellulosic biomass to liquid(BtL) transportation fuels seems to be a promising path and presents advantages over first generation biofuels and fossil fuels. Therefore, development of BtL systems is critical to increase the potential of this resource in a sustainable and economic way.Conversion of lignocellulosic BtL transportation fuels, such as, gasoline, diesel and jet fuel can be accomplished through various thermochemical processes and processing routes. The major steps for the production of BtL fuels involve feedstock selection, physical pretreatment, production of bio-oil, upgrading of bio-oil to transportation fuels and recovery of value-added products. The present work is aiming to give a comprehensive review of the current process technologies following these major steps and the current scenarios of biomass to liquid facilities for the production of biofuels.  相似文献   

8.
Abstract

The utilization of petroleum is managed primarily by heterogeneous catalysis. This technology at least quadruples the usefulness of a given amount of crude oil as compared to thermal processing. It seems clear that a similar increase in the usefulness of other fossil fuels such as coal and oil shale should be possible, In view of the energy shortage which we have all come to realize in the last year or so, the important central role of heterogeneous catalysis seems to be obvious.  相似文献   

9.
Energy price is rising due to rapid depletion of fossil fuels. Development of renewable and non-polluting energy resources is necessary for reducing pollution level caused by those conventional fuels. Researchers have recognized hydrogen (H2) as such an energy source. Hydrogen is a potential non-carbon based energy resource, which can replace fossil fuels. Hydrogen is considered as the alternative fuel as it could be generated from clean and green sources. Despite many advantages, storage of hydrogen is a serious problem. Due to high inflammability, adequate safety measures should be taken during the production, storage, and use of H2 fuel. This review article elucidates production methods and storage of hydrogen. Besides this safety related to H2 handling in refilling station, and automobiles has also been discussed. Study shows that safety program and awareness could be fruitful for increasing the acceptance of hydrogen as fuel.  相似文献   

10.
The 2007 IEA's World Energy Outlook report predicts that the world's energy needs will grow by 55% between 2005 and 2030, with fossil fuels accounting for 84% of this massive projected increase in energy demand. An undesired side effect of burning fossil fuels is carbon dioxide (CO2) emission which is now widely believed to be responsible for the problem of global warming. Various strategies are being considered for addressing the increase in demand for energy and at the same time developing technologies to make energy greener by reducing CO2 emissions.One of these strategies is to ‘capture’ produced CO2 instead of releasing it into the atmosphere. Capturing CO2 and its injection in oil reservoirs can lead to improved oil recovery as well as CO2 retention and storage in these reservoirs. The technology is referred to as CCS (carbon capture and storage). Large point sources of CO2 (e.g., coal-fired power plants) are particularly good candidates for capturing large volumes of CO2. However, CO2 capture from power plants is currently very expensive. In addition to high costs of CO2 capture, the very low pressure of the flue gas (1 atm) and its low CO2 content (typically 10-15%) contribute to the high cost of CO2 capture from power plants and the subsequent compression. This makes conventional CO2 flooding (which requires very large volumes of CO2) uneconomical in many oil reservoirs around the world which would otherwise be suitable candidates for CO2 injection. Alternative strategies are therefore needed to utilize smaller sources of CO2 that are usually available around oil and gas fields and can be captured at lower costs (due to their higher pressure and higher CO2 concentration).We investigate the potential of carbonated (CO2-enriched) water injection (CWI) as an injection strategy for improving recovery from oil reservoirs with the added benefit of safe storage of CO2. The performance of CWI was investigated by conducting high-pressure flow visualization as well as coreflood experiments at reservoir conditions. The results show that CWI significantly improves oil recovery from water flooded porous media. A relatively large fraction of the injected CO2 was retained (stored) in the porous medium in the form of dissolved CO2 in water and oil. The results clearly demonstrate the huge potential of CWI as a productive way of utilizing CO2 for improving oil recovery and safe storage of potentially large cumulative quantities of CO2.  相似文献   

11.
Methane has proven to be an outstanding energy carrier and is the main component of natural gas and substitute natural gas (SNG). SNG may be synthesized from the CO2 and hydrogen available from various sources and may be introduced into the existing infrastructure used by the natural gas sector for transport and distribution to power plants, industry, and households. Renewable SNG may be generated when H2 is produced from renewable energy sources, such as solar, wind, and hydro. In parallel, the use of CO2-containing feed streams from fossil origin or preferably, from biomass, permits the avoidance of CO2 emissions. In particular, the biomass-to-SNG conversion, combined with the use of renewable H2 obtained by electrolysis, appears a promising way to reduce CO2 emissions considerably, while avoiding energy intensive CO2 separation from the bio feed streams. The existing technologies for the production of SNG are described in this short review, along with the need for renewed research and development efforts to improve the energy efficiency of the renewables-to-SNG conversion chain. Innovative technologies aiming at a more efficient management of the heat delivered in the exothermic methanation process are therefore highly desirable. The production of renewable SNG through the Sabatier process is a key process to the transition towards a global sustainable energy system, and is complementary to other renewable energy carriers such as methanol, dimethyl ether, formic acid, and Fischer-Tropsch fuels.  相似文献   

12.
Although fossil fuels play an important role as the primary energy source that currently cannot be replaced easily with other energy sources, their depletion and environmental impact are becoming major concerns. Improvements in energy efficiency are believed to solve both problems simultaneously. We examined the relationships between the improvement in energy efficiency, energy usage and CO2 emissions in industry, especially in the distillation process. The energy efficiency improvement of dimethyl ether (DME) purification performed with dividing-wall column distillation (DWC) and acetic acid recovery performed with mechanical vapor recompression (MVR) were evaluated by recalculating the amount of fuel burnt and its CO2 emission. The results showed that the paradigm of lower energy being directly proportional to lower CO2 emissions is not entirely correct. To avoid this confusion, a tool for examining the uncommon behavior of various systems was developed.  相似文献   

13.
Klaus R.G. Hein 《Fuel》2005,84(10):1189-1194
The conversion of primary energy from natural sources and the subsequent utilisation of secondary forms of energy are basically related to the development of our society with its continuous change of requirements. Consequently the consumption of primary energy resources rose drastically especially during the last five decades. However, the increasing awareness of environment pollution from the use of, e.g. fossil fuels, the limitation of the availability of such sources as well as market considerations and costs forces governments to re-orientate their energy policy in order to ensure a sustainable supply for the future of their societies.The paper will start with an overview of the energy market development in general and by comparing certain key areas in the world. In particular, the situation in Europe will be discussed and the consequences for political actions and technological needs for the future energy supply will be highlighted.  相似文献   

14.
CO2 is considered to play a key role in an eventual climate change, due to its accumulation in the atmosphere. The control of its emission represents a challenging task that requires new ideas and new technologies. The use of perennial energy sources and renewable fuels instead of fossil fuels and the conversion of CO2 into useful products are receiving increased attention. The utilization of CO2 as a raw material for the synthesis of chemicals and fuels is an area in which scientists and industrialists are much involved: the implementation of such technology on a large scale would allow a change from a linear use of fossil carbon to its cyclic use, mimicking Nature. In this paper the use of CO2 as building block is discussed. CO2 can replace toxic species such as phosgene in low energy processes, or can be used as source of carbon for the synthesis of energy products. The reactions with dihydrogen, alcohols, epoxides, amines, olefins, dienes, and other unsaturated hydrocarbons are discussed, under various reaction conditions, using metal systems or enzymes as catalysts. The formation of products such as formic acid and its esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, and polycarbonates, is described . The factors that have limited so far the conversion of large volumes of CO2 are analyzed and options for large‐scale CO2 catalytic conversion into chemicals and fuels are discussed. Both homogeneous and heterogeneous catalysts are considered and the pros and cons of their use highlighted. © 2013 Society of Chemical Industry  相似文献   

15.
生物质热化学转化制液体燃料的研究进展   总被引:4,自引:1,他引:3  
生物质是唯一可转化成可替代常规液态石油燃料和其它化学品的可再生碳资源。热化学高效转化利用技术是生物质能源开发利用的最主要途径。本文综述了国内外生物质热化学转化制备液体燃料技术的主要研究途径、产业化进程的现状,论述了生物质液体燃料的产业化发展的可能性和存在的问题。对中国生物质热化学转化的发展趋势提出了研究开发利用的发展前景和建议。  相似文献   

16.
World annual consumption of energy is now about 5 × 1016 kcal and doubles every 15 to 20 years [1-4]. The main contribution to the energy balance of mankind is made by organic fossil fuels. However, if one compres modern annual energy consumption with the estimated energy that can be produced by burning all the prospected fossil fuels of the Earth (about 1019 kcal [1, 6]), the search for novel sources indeed becomes urgent, For the long-term prospects there are two most promising novel resources: thermonuclear energy baaed on dieterium and solar energy [1-13]. At present, wide use of these sources is not possible. It should be noted, however, that while controlled thermonuclear synthesis is in a state of experimental study, solar energy is continuously received by the Earth in amounts exceeding the needs of our civilization. The problem is only how to utilize this gifted energy.  相似文献   

17.
《分离科学与技术》2012,47(9-10):2460-2472
Abstract

With the continual rise in the cost of fossil fuel based energy, research into economic and sustainable alternatives is of increasing importance. One significant source of increased cost and demand is the consumption of fossil fuels for automotive fuels. While ethanol has received the most attention as a fuel additive; butanol could be a better direct fuel alternative owing to its physical properties and energy value when compared to ethanol. Commercial butanol is nearly exclusively produced from petroleum feedstocks currently; however, some recent interest has begun to refocus on its generation via fermentation. Unfortunately, this production is limited due to the nature of the process and the use of energy-intensive separation techniques. Ionic liquids are novel green solvents that have the potential to be employed as an extraction agent to remove butanol from the aqueous fermentation media. A hurdle to this potential is the limited availability of solubility data for ionic liquids. This research investigates the phase behavior of two ionic liquids, butanol, and water. Additionally, issues related to the implementation of the investigated ionic liquids are discussed.  相似文献   

18.
The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.  相似文献   

19.
The production of synthetic fuels from alternative sources has increased in recent years as a cleaner, more sustainable source of transport fuel is now required. In response to European renewable energy targets, Ireland has committed, through the Biofuels Obligation Scheme of 2008, to producing 4% of transport fuels from biofuels by 2010 and 10% by 2020. In order to be suitable for sale in Europe, diesel fuels and biodiesels must meet certain European fuel specifications outlined in the EN 590:2004 and EN 14214:2009 standards. The aim of this project is to prepare blends of varying proportions of synthetic diesel fuel (Cyn-diesel), produced from the pyrolysis of plastic, versus regular fossil diesel. The viscosity (mm2/s) and density (kg/m3) of these blends as well as of the regular diesel fuel were analysed in relation to compliance with the European fuel standard EN 590.  相似文献   

20.
A methodology is presented for optimizing hybrid renewable energy‐fossil fuel systems with short‐term heat storage. The considered system is an absorption‐refrigeration (AR) cycle integrated with a heat exchanger network (HEN) requiring cooling below ambient temperature. The AR cycle can be driven by multiple energy sources including excess energy from hot process streams, renewable energy sources (solar and biofuels), and fossil fuels. A two‐step approach based on mixed integer nonlinear programming methods is used for the optimization. First, the problem of optimal energy integration in the hybrid energy system without heat storage is solved on a monthly basis by minimizing simultaneously the total annual cost and the overall greenhouse gas emissions. In the second step, the multi‐tank thermal energy storage (TES) design problem is solved. The design involves the identification of the optimal number of storage tanks, their sizes, configuration and operation policies. The TES optimization is carried out on an hourly basis while incorporating the design targets determined by the first step. © 2013 American Institute of Chemical Engineers AIChE J, 60: 909–930, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号