首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principle of an ultrasonic nebulizer is based on the vibrations of a piezoelectric crystal driven by an alternating electrical field. These periodic vibrations are characterized by their frequency, their amplitude, and their intensity, which corresponds to the energy transmitted per surface unit. When the vibration in tensity is sufficient, cavitation occurs, and droplets are generated. Ventilation enables airflow to cross the nebulizer and to expel the aerosol droplets. For a given nebulizer, the vibration frequency of the piezoelectric crystal is fixed, often in the range 1-2.5MHz. In most cases, an adjustment in vibration intensity is possible by modifying vibration amplitude. The ventilation level is adjustable. The vibrations may be transmitted through a coupling liquid--commonly water--to a nebulizer cup containing the solution to be aerosolized. In this work, we studied the influence of the technological parameters of ultrasonic nebulization on nebulization quality. Our study was carried out with a 9% sodium chloride solution and a 2% protein solution (alpha1 protease inhibitor). Three different ultrasonic nebulizers were used. An increase in vibration frequency decreased the size of droplets emitted. The coupling liquid absorbed the energy produced by the ultrasonic vibrations and canceled out any heating of the solution, which is particularly interesting for thermosensitive drugs. An increase in vibration intensity did not modify the size of droplets emitted, but decreased nebulization time and raised the quantity of protein nebulized, thus improving performance. On the other hand, an increase in ventilation increased the size of emitted droplets and decreased nebulization time and the quantity of protein nebulized because more drug was lost on the walls of the nebulizer. High intensity associated with low ventilation favors drug delivery deep into the lungs.  相似文献   

2.
Sandwiched piezoelectric ultrasonic transducers of longitudinal-torsional compound vibrational modes were studied. The transducers consist of coaxially segmented, longitudinally and tangentially polarized piezoelectric ceramic rings, a back metal cylinder, and a front exponential solid metal horn. Based on the plane-wave approximation, the equivalent circuits of the longitudinal and torsional vibrations in the sandwiched transducer were obtained and the resonance frequency equations of the transducer in longitudinal and torsional vibrations were derived. By means of choosing the radius decay coefficient of the front exponential horn, the longitudinal and torsional vibrations are made to resonate at the same frequency in the transducer. Sandwiched piezoelectric ultrasonic transducers of longitudinal-torsional compound modes were designed and fabricated according to the frequency equations. It is demonstrated that the measured resonance frequencies of the transducers are in good agreement with the theoretical results, and the measured resonance frequencies of the transducers in longitudinal and torsional vibration modes are also in good agreement with each other. Theoretical and experimental results show that this kind of transducer can be used in ultrasonic welding, ultrasonic machining, ultrasonic motors, and other ultrasonic applications which need large displacement amplitudes  相似文献   

3.
林书玉 《声学技术》2008,27(4):605-611
对由压电陶瓷圆环与金属圆环组成的复合振动系统的径向振动特性进行了研究。首先分析了压电陶瓷圆环和金属圆环的径向振动,推出了其各自的机电等效电路。在此基础上,得出了压电陶瓷圆环与金属圆环复合振动系统的机电等效电路及其共振频率方程。探讨了系统的共振及反共振频率、有效机电耦合系数与其几何尺寸之间的关系。研究表明,当复合振动系统的壁厚比增大时,其共振及反共振频率升高。对于换能器的第一阶径向振动,其有效机电耦合系数随壁厚比的增大而单调减小;对于换能器的第二阶径向振动,其有效机电耦合系数随壁厚比的增大会出现一个极大值,而且,在一定的壁厚比范围内,换能器第二阶径向振动的有效机电耦合系数大于第一阶径向振动的有效机电耦合系数,这一规律与传统的有关压电换能器的分析理论及结果是有所不同的。  相似文献   

4.
In this paper, a new type of radial composite ultrasonic transducers in radial vibration is presented and studied. The radial composite ultrasonic transducer consists of a solid piezoelectric ceramic thin disk and a hollow metal thin, circular ring in radial vibration; and they are connected together in the radial direction. The radial vibrations of a piezoelectric ceramic thin disk and a hollow, metal, thin, circular ring are analyzed, respectively. Their radial electromechanical equivalent circuits are obtained. Based on the electromechanical equivalent circuits and using the boundary conditions between the piezoelectric ceramic thin disk and the hollow, metal, thin ring, the electromechanical equivalent circuit of the radial composite ultrasonic transducer is derived and the resonance frequency equation is obtained. The theoretical results from the resonance frequency equation are in good agreement with the measured radial resonance frequencies, and they also are in a good agreement with the results from the numerical method.  相似文献   

5.
Many industrial processes involve particles in a carrier fluid, and it is often of interest to monitor the size of these particles noninvasively. The aim of this paper is to develop a theoretical model of multiple particle-wall impact vibrations that can be used to recover the particle size from experimental data. These vibrations have been measured by an ultrasonic transducer attached to the exterior of a vessel containing a stirred-particle-laden fluid. A linear systems model is derived for the response of the piezoelectric ultrasonic transducer, which has a single matching layer. The acceleration power spectrum of these vibrations has been shown experimentally to contain information on the size of the impacting particle. In particular, the frequency of the main spectral lobe is inversely proportional to the particle size. We present a theoretical model that agrees with this empirically observed phenomenon. The theoretical model is then used to simulate multiple particle-wall impacts, with each particle impacting at a randomly chosen location. A set of theoretical vibration spectra arising from multiple particle-wall impacts are integrated and compared with the experimental data. The ability of this approach to distinguish between different particle sizes is clearly shown.  相似文献   

6.
A thimble-shaped glass frit nebulizer has been developed for atomic spectrometry. The thimble glass frit was pressurized internally by gases such as helium (He) or argon (Ar) while the test solution was applied externally to the frit. The pressurized gas exited through the pores of the glass frit and shattered the thin liquid film flowing on the surface of the thimble-shaped device to form small droplets. A small spray chamber surrounded the nebulizer to remove the large droplets. Small droplets were then introduced into inductively coupled plasmas (ICP) sustained in either Ar or He. To reduce the memory effect noted in the frit-type nebulizers, a clean-out system was also devised. Detection limits, signal-to-background ratios (S/B), precision, memory effects, noise power spectra (NPS), and particle size distributions measured with the new nebulizer were compared to those of disk and cylindrical glass frit nebulizers and the commonly used pneumatic nebulizer for Ar ICP atomic emission spectrometry (AES). Analytical performance was also measured for He ICP by using frit-type nebulizers and an ultrasonic nebulizer.  相似文献   

7.
Two novel laser-based imaging techniques centered on particle image velocimetry and optical patternation are used to map and contrast the size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. The flow field of droplets is illuminated by two pulses from a thin laser sheet with a known time difference. The scattering of the laser light from droplets is captured by a charge-coupled device (CCD), providing two instantaneous images of the particles. Pointwise cross-correlation of the corresponding images yields a two-dimensional velocity map of the aerosol velocity field. For droplet size distribution studies, the solution is doped with a fluorescent dye and both laser-induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. The ratio of the LIF/Mie images provides relative droplet size information, which is then scaled by a point calibration method via a phase Doppler particle analyzer. Two major findings are realized for three nebulization systems: (1) a direct injection high-efficiency nebulizer (DIHEN); (2) a large-bore DIHEN; and (3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. First, the central region of the aerosol cone from the direct injection nebulizers and the nebulizer-spray chamber arrangement consists of fast (>13 and >8 m/s, respectively) and fine (<10 and <5 microm, respectively) droplets as compared to slow (<4 m/s) and large (>25 microm) droplets in the fringes. Second, the spray chamber acts as a momentum separator, rather than a droplet size selector, as it removes droplets having larger sizes or velocities. The concepts and results presented in this research may be used to develop smart-tunable nebulizers, for example, by using the measured momentum as a feedback control for adjusting the nebulizer, i.e., its operating conditions, its critical dimensions, or both.  相似文献   

8.
Particulate-based proliposomes were made by coating sucrose carrier particles with egg phosphatidylcholine (EPC), soya phosphatidylcholine (SPC) or soya phosphatidylcholine with an equimole ratio of cholesterol (SPC:Chol, 1:1). Inhalable multilamellar liposomes were generated from proliposomes in situ within a Pari LC Plus nebulizer by addition of aqueous phase, with no need for prior manual shaking. All proliposome formulations produced high aerosol and phospholipid outputs and were delivered in high fractions to the lower stage of a two-stage impinger. The SPC:Chol (1:1) liposomes tended to accumulate more in the nebulizer because of their greater rigidity, which correlated with the larger size measured at the end of nebulization. The size of aerosol droplets as measured by laser diffraction was similar for all formulations, however, at the sputtering period, the SPC:Chol (1:1) formulation produced large droplets with broadened size distribution. This study has demonstrated a simple approach to delivering high outputs of liposomes using a particulate-based proliposome technology and has shown an evidence of liposome generation from proliposomes within a medical nebulizer.  相似文献   

9.
An ultrasonic nebulization/multiple channel electrospray ionization (USN/MC-ES) source, which generates multiply charged peptides and proteins ions, was developed. The source is an ultrasonic nebulizer that is connected to a multiple channel electrospray ionization source. Aerosols were formed by ultrasonically nebulizing the sample solution. The aerosols were then purged into the central channel of a seven-channel ES source via nitrogen gas. A methanol solution that contained 1% trifluroacetic acid was electrosprayed through the outlying six electrosprayers. Detection of multiply charged peptide and protein ions indicated that electrospray was generated from the charged droplet containing analyte. The sample aerosol appeared to fuse with the charged methanol droplet in the air. Then electrospray ionization of the analyte occurred from the newly formed droplet. The peptide and protein prepared in deionized water were detected by this USN/MC-ES-MS. By varying the electrospray solvents, the signals of certain components in the mixture were selectively suppressed.  相似文献   

10.
A method for estimating the regional lung dosages of a nebulized suspension is presented and applied to Pulmicort® & lpar;budesonide) suspension (4 ml, 0.5 mg/ml) nebulized with three Pari LC + nebulizers driven by a Pulmo-Aide compressor. The methodology combines experimental measurements of the nebulized aersol with a mathematical lung depositor model By adding medlylene blue as tracer for the water, cascade impaction with UV spectrophotometry is used to characterize the distribution of both budesonide and water in the inhaled droplets. Tidal breathing is simulated experimentally using a breath simulator to estimate the amount of inhaled drug. A valve system allows cascade impaction to occur at a constant flow rate of 28.3 l/min. while inhalation at 18 1/min. occurs through the nebulizer. Lung dosages (as % of inhaled dose) obtained with the methodology are in good agreement with values observed in vivo by previous researchers using pharmacokinetic methods with the LC+ nebulizer and the present budesonide formulation. Budesonide is found to be preferentially contained in the larger droplets, and calculated regional lung dosages show that an assumption of homogeneous distribution of the budesonide in the inhaled droplets is incorrect.  相似文献   

11.
ABSTRACT

A method for estimating the regional lung dosages of a nebulized suspension is presented and applied to Pulmicort® & lpar;budesonide) suspension (4 ml, 0.5 mg/ml) nebulized with three Pari LC + nebulizers driven by a Pulmo-Aide compressor. The methodology combines experimental measurements of the nebulized aersol with a mathematical lung depositor model By adding medlylene blue as tracer for the water, cascade impaction with UV spectrophotometry is used to characterize the distribution of both budesonide and water in the inhaled droplets. Tidal breathing is simulated experimentally using a breath simulator to estimate the amount of inhaled drug. A valve system allows cascade impaction to occur at a constant flow rate of 28.3 l/min. while inhalation at 18 1/min. occurs through the nebulizer. Lung dosages (as % of inhaled dose) obtained with the methodology are in good agreement with values observed in vivo by previous researchers using pharmacokinetic methods with the LC+ nebulizer and the present budesonide formulation. Budesonide is found to be preferentially contained in the larger droplets, and calculated regional lung dosages show that an assumption of homogeneous distribution of the budesonide in the inhaled droplets is incorrect.  相似文献   

12.
This paper studied the effect of ultrasound on distribution characteristics of condensate droplets on a vertical metal surface. The surface was made of aluminum and coated with PVC film to obtain durable condensate droplets. Visualization of the condensation process was carried out under the action of ultrasonic vibration with a constant frequency of 20 kHz. The effects of ultrasonic power on surface coverage of condensate droplets, first shedding time of condensate droplets, total number of shedding, heat flux and condensation heat transfer coefficient were analyzed. Furthermore, the mechanism of ultrasonic vibration on accelerating the shedding of condensate droplets was discussed. The results indicated that the shedding of condensate droplets was accelerated by ultrasound compared with those without ultrasound. In addition, the shedding period of condensate droplets was decreased with the increase of ultrasonic power. Contrarily, the heat flux and the condensation heat transfer coefficient were increased with the increase of ultrasonic power. The maximum enhancement ratio of heat transfer coefficient reached 2.67 compared with that without applying ultrasound. This study shows that ultrasound has a good application prospect in strengthening condensation heat transfer, particularly for space applications in microgravity environment.  相似文献   

13.
The radial composite ultrasonic transducer of a piezoelectric ceramic ring and a metal ring is studied. The radial vibrations of a piezoelectric ceramic ring polarized in the thickness direction and a metal ring are analyzed and their electromechanical equivalent circuits are obtained. On the basis of the electromechanical equivalent circuits of the piezoelectric and the metal ring and the radial boundary conditions, the total electromechanical equivalent circuit for the composite ultrasonic transducer is also obtained. The resonance frequency and anti-resonance frequency equations of the composite ultrasonic transducer are given. Some radial composite ultrasonic transducers are designed and manufactured and their resonance and anti-resonance frequencies are measured. Experiments show that the measured resonance frequencies are in a good agreement with the theoretical results.  相似文献   

14.
Based on the equivalent elastic method and coupled vibration theory, an analytic method is presented to study the flexural vibration of rectangular transducers consisting of piezoelectric ceramic thin plates. By introducing a mechanical coupling coefficient, the flexural vibration of the piezoelectric ceramic rectangular thin plate is reduced to two simple, one-dimensional flexural vibrations of narrow piezoelectric ceramic strips. The resonance frequency equations for the piezoelectric ceramic rectangular thin-plate transducers in flexural vibration are derived under the free and simply supported boundary conditions analytically. The relationship between the resonance frequency and the flexural vibrational order, the geometrical shape, and the dimensions of the piezoelectric ceramic rectangular thin-plate transducer is analyzed. It is demonstrated that the one-dimensional vibrational theory for the flexural vibration of a narrow piezoelectric ceramic strip and the stripe-mode flexural vibrational theory for the piezoelectric ceramic rectangular thin plate can be derived directly from the theory obtained in this paper. Experimental results show that the measured resonance frequencies of the piezoelectric ceramic rectangular thin-plate transducers in flexural vibration under free-boundary conditions are in good agreement with the calculated results. The method presented in this paper can be used in the resonance frequency analysis of vibrating systems in coupled vibration.  相似文献   

15.
胡涛  刘宇  傅波 《声学技术》2021,40(2):286-294
针对全波压电超声换能器常规设计方法存在的尺寸参数较多、计算较复杂等问题,研究了一种利用机械品质因数设计全波压电超声换能器的方法.基于压电超声理论推导了全波压电超声换能器的频率方程,利用电学理论推导了全波压电超声换能器各组成部分的等效电路,利用等效电路求取了在任意等效截面处的等效机械阻抗,进而推导出全波压电超声换能器各部...  相似文献   

16.
We study coupled face-shear and thickness-twist motions of piezoelectric plates of monoclinic crystals driven by lateral electric fields. The first-order theory of piezoelectric plates is used. Pure thickness modes and propagating waves in unbounded plates as well as vibrations of finite plates are studied. Both free vibrations and electrically forced vibrations are considered. Basic vibration characteristics including resonant frequencies, dispersion relations, frequency spectra and motional capacitance are obtained. Numerical results are presented for AT-cut quartz plates. The results are expected to be useful for the understanding and design of resonant piezoelectric devices using lateral field excitation.  相似文献   

17.
A review is given of the properties and applications of poly(vinylidene fluoride) (PVdF), a strong, chemically-inert but electronically-active polymer. It is only recently that poled, electroded film, suitable for electronic devices, has been manufactured in quantity within the UK. The piezoelectric and pyroelectric responses of PVdF rival those of ceramics. Its polymeric nature also confers advantages over ceramics; for example, lower cost, large area, flexibility, low acoustic impedance, and high-frequency operation. There are many possible applications of PVdF in sensing (heat and vibration) and in the generation of mechanical vibrations. Possible fields of use include underwater sound detection, surveillance by infrared, ultrasonic test probes, vibrators and consumer electronics.  相似文献   

18.
Charged residues from the electrospray process have been hypothesized to limit the sensitivity and dynamic range of an ion trap mass spectrometry operation. Incorporation of an off-axis nebulizer (positioned 90-95° from the sampling orifice) was found to drastically reduce the detrimental effects caused by the charged particles or droplets compared to typical on-axis nebulization configurations (spraying 10-20° from sampling orifices). The off-axis nebulizer reduced total ion currents that enter the ion trap (through the reduction of charged residues) by a factor of 5-7 while resulting in an increase of analyte [M + H](+) signal by a factor of 6 compared to an on-axis sprayer at flow rates of 20 μL/min. At higher flow rates (e.g., 800 μL/min) these enhancements are more evident. At flows greater than 200 μL/min, off-axis nebulization reduced total ion current that enters the ion trap by a factor of 30 and resulted in a factor of more than 20 increase in [M + H](+) signal relative to on-axis nebulization. Incorporation of the off-axis nebulizer improved the detection limit and precision for determination of dihydroxyvitamin D(3) in plasma compared to on-axis nebulization. The LC/MS/MS detection limits obtained for the off-axis nebulizer on the ion trap was within a factor of 2 from the detection limit determined by the triple quadrupole. The relative standard deviation of the dihydroxyvitamin D(3) determination was less than 8% for both off-axis ion trap and triple-quadrupole determinations.  相似文献   

19.
林书玉 《声学技术》1994,13(1):15-20
在考虑压电效应的情况下,本文对压电陶瓷圆形振子的耦合振动进行了研究。根据压电陶瓷圆形振子的运动方程及压电方程,通过引入振子不同振动模式之间的机械耦合系数,分析了振子轴向及径向振动之间的耦合关系,得出了振子耦合振动的电导纳表达式,并导出了共振频率方程。与一维理论的结果相比,由本文理论得出的振子共振频率与实际测量值更加符合。  相似文献   

20.
The piezoelectric ultrasonic composite transducer, which can be used in either gas or liquid media, is studied in this paper. The composite transducer is composed of a longitudinal sandwich piezoelectric transducer, a mechanical transformer, and a metal circular plate in flexural vibration. Acoustic radiation is produced by the flexural circular plate, which is excited by the longitudinal sandwich transducer and transformer. Based on the classic flexural theory of plates, the equivalent lumped parameters for a plate in axially symmetric flexural vibration with free boundary conditions are obtained. The radiation impedance of the plate is derived and the relationship between the radiation impedance and the frequency is analyzed. The equivalent circuits for the plate in flexural vibration and the composite transducer are given. The vibrational modes and the harmonic response of the composite piezoelectric transducer are simulated by the numerical method. Based on the theoretical and numerical analysis, two composite piezoelectric ultrasonic transducers are designed and manufactured, their admittance-frequency curves are measured, and the resonance frequency is obtained. The flexural vibrational displacement distribution of the transducer is measured with a laser scanning vibrometer. It is shown that the theoretical results are in good agreement with the measured resonance frequency and the displacement distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号