首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The drying of porous materials immersed in the fluidized bed under reduced pressure was performed, and the results were compared with those of hot air drying. The pressure in drying chamber was changed (5.0-101.3 kPa) and the effect of it was examined.

The temperature of the sample center becomes lower as the pressure in drying chamber decreases, and the temperature in fluidized-bed drying is higher than that in hot air drying at the same pressure. The effect of pressure in drying chamber on the sample temperature is significant for different temperatures of drying gas.  相似文献   

2.
ABSTRACT

In tropical countries, sun drying is still the most popular method used for processing root and tuber crops like cassava and yam. Relatively very little has been done on studying the kinetics of sun drying a bed of chips of cassava and similar crops, but this information is invaluable in finding options for reducing drying time and costs, and increasing tonnage produced. This project studied some factors that have an effect on the sun drying rate of cassava chips. The factors were ambient temperature, relative humidity, radiation intensity, air velocity, and loading density.

A solar simulation chamber was constructed so that drying could be achieved under controllable conditions similar to those obtained in sun drying. Experiments carried out in the simulator revealed that temperature had the most significant effect on drying rate, followed by air velocity, and radiation intensity. Regression equations were developed relating the drying rate with the factors studied.  相似文献   

3.
Abstract

The superheated steam drying at reduced pressure is performed, and the effects of operational conditions such as drying pressure and temperature on the drying characteristics are examined. In order to obtain the basic guideline for the design of the superheated steam dryer at reduced pressure, the heat flux to sample was calculated and the optimal conditions were estimated.

After the sample temperature reached at the boiling point, the temperature was maintained at the boiling point and the drying rate became almost constant. Once the sample was dried out, the temperature suddenly increased up to the drying gas temperature. From the calculation of combined heat flux, the followings were found. The contribution of radiative heat transfer to the combined heat flux became larger as the drying pressure was lower. The combined heat flux had a maximum value against the drying pressure. The optimum drying pressure, which gave the maximum heat flux, became lower as the drying gas temperature decreased. It was found that reduction in the drying pressure is effective for the enhancement in drying performance.  相似文献   

4.
《Drying Technology》2013,31(10):2067-2079
ABSTRACT

This paper presents new data on drying chilli in a microwave-vacuum-rotary drum dryer. This novel technique is designed to combine the advantages of vacuum drying and evenly dispersed microwave energy in a rotary drum. The drying kinetic and the specific energy consumption at particular product moisture content were measured experimentally. Moreover, the effect of pressure inside the chamber and the rotational speed of the drum were also determined.  相似文献   

5.
《Drying Technology》2013,31(1):109-129
ABSTRACT

Experiments to dry a collagen gel in order to obtain a homogenous film were carried out using a new process: dehydration by successive decompression “DDS” (Déshydratation par Détentes Successives). This process, particularly suited to thermosensitive products, involves a series of cycles during which the collagen gel is placed in desiccated air at a given pressure then subjected to an instantaneous (200 ms) pressure drop to a vacuum (7–90 kPa). This paper assesses the effect of four parameters of this drying process, namely high pressure (P h) and vacuum pressure (P v) and the effect of the duration at these pressures (t h and t v) on the drying rate, and the temperature of the collagen gel during drying. A comparative study between this new drying process and conventional methods indicated that the drying time was reduced from 480 and 700 min for vacuum and hot air drying respectively to 270 min for our process.  相似文献   

6.
The objective of this study is to estimate the drying characteristics of a relatively large material immersed in a fluidized bed under reduced pressure by measuring the constant drying rate. The constant drying-rate period in a fluidized bed under reduced pressure is difficult to measure because it is extremely short. To maintain the constant drying-rate period, distilled water is directly supplied to the drying material. Through our experiment, the heat transfer coefficient of the material surface was also determined. The results were compared with data on hot air drying. The constant drying rate is higher for fluidized bed drying than for hot air drying. It suggests that the heat transfer coefficient on the surface of the drying material is much larger for fluidized bed drying than for hot air drying. For fluidized bed drying, the effect of pressure in the drying chamber on the heat transfer coefficient is slight at the same normalized mass velocity of dry air (G/Gmf). The temperature difference between the inside of the drying chamber and the drying material is much smaller for fluidized bed drying than for hot air drying. The constant drying rate increases as the pressure in the drying chamber decreases.  相似文献   

7.
Abstract

This study aimed to determine the equilibrium moisture content and to develop an indirect measurement technique for the moisture content (MC) by observing temperature and vapor pressure during hot air drying. The temperature and gas pressure were recorded during hot air drying at several points within wood sample specimens conforming to ASTM D 143 and AOAC, 1990. The moisture content was estimated from measured temperature and pressure. The accuracy of MC estimates was validated by oven-drying method. For validation, nine experiments at different temperatures of hot air drying were run and the indirect measurement was found to provide a good accuracy. The obtained statistics were R2 = 82.5%, standard error (SE) ranging from 0.15 to 0.43, root mean square error (RMSE) ranging from 0.16 to 0.38 and mean absolute error (MAE) ranging from 0.4 to 1.1 respectively. It can be concluded that the air in wood was removed completely, especially when the MC was below the fiber saturation point. We have demonstrated an alternative moisture content monitoring method for potential adoption by the rubberwood industries.  相似文献   

8.
The hygroscopic porous particle was used as the fluidizing particle for the superheated steam fluidized bed drying under reduced pressure. A relatively large material was immersed in the fluidized bed as the drying sample. The drying characteristics of the sample were examined experimentally and the results were compared with those in the case of inert particle fluidized bed.

The water transfer from the sample to the fluidizing particle bed in the case of hygroscopic porous particle facilitated the drying regardless of pressure and temperature in the drying chamber. The increment degree of the sample temperature at the earlier period of drying was smaller in the case of hygroscopic porous particle than in the case of inert particle, and the phenomenon was more remarkable in the case of superheated steam than in the case of hot air.  相似文献   

9.
《Drying Technology》2013,31(8):1575-1584
Abstract

Onion slices of 3 mm thick were dried in an atmospheric batch tray dryer in order to investigate the influence of air temperature and drying time on parameters such as sample moisture content and drying rate. A model is proposed which takes into account both moisture and temperature distributions in the sample and is in a fair agreement with the experimental data. The models suggested so far by other workers take only the moisture distributions into account for onion drying.  相似文献   

10.
《Drying Technology》2013,31(4-5):917-933
ABSTRACT

Hydrodynamics and drying kinetics for the pulp and paper primary sludge dried in a pulsed fluid bed dryer with relocated air stream are presented. Batch experiments have indicated that drying of disintegrated sludge to the required 12% moisture content takes place during the first drying period at practically constant material temperature close to the wet bulb temperature with respect to the inlet air conditions. Equations were developed for pressure drop, minimum pulsed-fluidization velocity, dynamic bed height, and volumetric mass transfer coefficient. Continuous experiments under drying conditions determined from the average residence time concept have confirmed that transportation of disintegrated sludge along the dryer follows the plug flow model.

  相似文献   

11.
《Drying Technology》2013,31(1-2):305-315
Abstract

Moisture is one of the most deteriorating factors of buildings. The deteriorating effect of moisture occurs mainly during the drying phase, not in the wetting phase. Environmental factors, such as air temperature, air humidity, and air velocity affect drying. An experimental air dryer of controlled drying air conditions was used to investigate the drying performance of 4 stone materials, 2 bricks, and 6 plasters. Drying kinetics was examined at 3 air temperatures, 5 air humidities, and 3 air velocities. A first-order kinetics model was obtained in which the drying time constant was a function of the drying conditions, and the equilibrium material moisture content was described by the modified Oswin equation. The parameters of the proposed model were found to be affected strongly by the material characteristics.  相似文献   

12.
《Drying Technology》2013,31(5):899-916
Abstract

A thin-layer superheated steam drier was constructed with the objective of determining the drying characteristics, drying rates, and the effect of superheated steam on product quality in thin-layers. Results from superheated steam drying experiments with sugar-beet pulp, potatoes, Asian noodles, and spent grains indicate that drying times and rates increase with increasing steam temperature. For sugar-beet pulp it was also found that these changes were more significant than increases seen by hot-air drying under the same conditions and that drying rates were not affected by velocity for hot air but were increased for superheated steam. When quality aspects were examined, superheated steam dried Asian noodles saw both beneficial changes to recovery, adhesiveness, and gumminess while parameters of maximum cutting stress, resistance to compression, and surface firmness saw deleterious effects. Spent grains saw high levels of starch gelatinization and retention of fibre content.

  相似文献   

13.
Abstract

The effect of drying conditions on color changes of apple, banana, carrot and potato during conventional and vacuum drying was investigated. The Hunder color scale parameters redness, yellowness and lightness were used to estimate color changes during vacuum and conventional drying at 50, 70 and 90°C. Air humidity during conventional drying was regulated at 15, 30 and 40%. Air temperature and humidity affected redness and yellowness, but not lightness. A first order kinetic model was fitted to experimental data adequately for both redness and yellowness. The rate of color deterioration was found to increase as temperature increased and air humidity decreased, for both drying methods and all the examined materials.  相似文献   

14.
ABSTRACT

Drying kinetics were examined by introducing one-parameter empirical mass aansfer model, where the characteristic parameter (drying constant), is a function of process variables. The model was tested with data produced in an experimental through dryer, using direct regression analysis. Investigation involved two vegetables (namely, green pepper and onion) and a wide range of characteristic dimensions of samples and air conditions (temperature, humidity, and velocity). The parameters of the model considered were found to be greatly affected by sample characteristic dimension and air temperature.  相似文献   

15.
Abstract

The kinetics of combined convective and micro-wave drying presents universally more than the two habitual drying phases. Superimposed to a general heating of the product, a brutal and short acceleration of the drying rate raises all flux densities at a very important level. This is particularly evident with the class of product we used in this study : non porous polymeric gels.

Moreover, an unusual correlation between the kinetics and the surface temperature around the micro-wave specific phase might appear : unexpectedly, the evaporation flux density decreases when the surface temperature increases noticeably.

In order to elucidate this apparent complexity and understand the underlying physical phenomena, we analysed term by term all fluxes according to their origin. The splitting was achieved through mathematical modelling and partially validated by the recording of temperatures and mass fluxes.

Usually with convective drying, all rate changes are governed by the state o f the product : hygroscopicity and porosity development. Here in the case of combined micro-wave drying, all accidents on the drying curves are determined by the heat generation and the heat transfer situation. The constant rate period is also governed by the balance of heat fluxes. The accelerated period corresponds to a heat wave arriving to the surface. Most of the time, the product gives out heat to the surrounding air : this heat is lost for the drying but this cooling effect may he used for the protection of the sample.  相似文献   

16.
《Drying Technology》2013,31(1):93-108
ABSTRACT

The use of microwave energy in the drying of deformable material such as gel considerably reduces drying time and enables the control of retraction in the sample. A further advantage is that no hot spots are produced, allowing a dry product of superior quality to be obtained.The aim of this work has been to determine the kinetics of the convective-microwave drying process of agar gel plates. For this purpose, we developed a pilot closed loop, computer-controlled apparatus of convective-microwave drying, that enables the drying air conditions to be changed and the microwave power to be supplied over a wide value range. The equipment also records the sample surface temperature by means of an infrared thermometer. The drying curves obtained for plane geometry present four different drying phases: an initial phase where a rapid increase in the drying rate and in the surface temperature can be observed, as well as a constant rate phase that ends in the so-called convective critical moisture content, a first falling rate phase that concludes in the microwave critical moisture point, and finally a second falling rate phase. Combined convective-microwave drying enables a considerable reduction in drying time compared to convective drying, the time required being inversely proportional to the microwave power supplied. The empirical equation that best represents the kinetics is of the Page type. The absorbed volumetric power in terms of the moisture content was experimentally estimated, with the experimental data fitting an empirical equation.  相似文献   

17.
《Drying Technology》2013,31(7):1427-1444
ABSTRACT

The release of volatile organic components (VOC) during the drying of wood chips was studied experimentally. The drying medium was hot dry air with a pressure of 1 bar and velocity of 1 m/s. Four different temperature levels of the drying medium, i.e., 120, 140, 160 and 180°C, and two different materials, Scots Pine and Norway Spruce, were investigated. It was found that the main components released consist of various types of monoterpenes, with α-pinene dominating in each of the two materials. The amount released is time-dependent, showing a maximum at shorter times. The release rate is more intensive at higher drying temperatures. The mass-balance for α-pinene was checked by comparing the amount present in the wood chip before and after drying with the amount obtained by integrating the release curve. A good agreement was obtained. Environmental Scanning Electron Microscope pictures were taken of both the spruce and pine chip in order to investigate differences in the wood structure before and after drying with air at 160°C. No obvious structural change could, however, be observed. The influence of the drying medium on the release rate of monoterpenes (air and superheated steam) was also studied. The results showed that the release rate was faster when drying with superheated steam.  相似文献   

18.
ABSTRACT

Tortilla pieces were prepared from nixtamalized masa flour, and dried under impinging hot air. The effect of different drying conditions on the drying rate, texture, shrinkage profile and microstructure was analyzed. The results indicated that drying rate was mostly affected by the air temperature; texture was crispier at higher air temperatures: shrinkage of the piece was higher at lower convective heat transfer coeffieient; and microstructure looked smoother at higher air temperature.  相似文献   

19.
《Drying Technology》2013,31(7):1215-1234
Abstract

Vacuum drying of mango pulp at varying conditions of pulp thickness (2, 3, and 4 mm) and vacuum chamber plate temperature (65, 70, and 75°C) was carried out under 30–50 mm of mercury absolute pressure. A model based on moisture diffusivity was found to give close prediction to moisture content of the pulp at different times of drying with correlation coefficient varying between 0.98–0.99 for pure mango pulp and pulp with ingredients. Color change of reconstituted pulp made from mango powder was found to depend more on pulp thickness than plate temperature. For getting low color change vacuum drying should be carried at maximum pulp thickness of 2.6 mm and vacuum chamber plate temperature of 72.3°C.  相似文献   

20.
《Drying Technology》2013,31(1-2):387-396
Abstract:

In order to design, manufacture, and commission a commercial dryer to dry individually quick frozen (IQF) wild blueberries (Vaccinium angustifolium), The Nova Scotian Fruit Company completed a series of experiments to characterize the effect of air velocity, air temperature, and packed bed depth on drying. Based on previous experience with forced air packed bed drying systems at air temperatures up to 65°C, the experiments focused on measuring the effect of air temperature and velocity during the first few hours of drying. The data collected suggest that drying occurs solely in the falling rate period. These data were used to successfully design, build, and commission a commercial dryer with a tenfold increase in production capacity over previous equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号