首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the green alga (Ulva lactuca) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by U. lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of U. lactuca biomass for Pb(II) and Cd(II) ions was found to be 34.7mg/g and 29.2mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 10.4kJ/mol for Pb(II) biosorption and 9.6kJ/mol for Cd(II) biosorption, indicating that the biosorption of both metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Pb(II) and Cd(II) ions onto U. lactuca biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

2.
The ability of manganese oxide coated zeolite (MOCZ) to adsorb copper and lead ions in single- (non-competitive) and binary- (competitive) component sorption systems was studied in fixed-bed column. The experiments were applied to quantify particle size, bed length, influent flow rate and influent metal concentration on breakthrough time during the removal of copper and lead ions from aqueous solutions using MOCZ column. Results of fixed-bed adsorption showed that the breakthrough time appeared to increase with increase of the bed length and decrease of influent metal concentration, but decreased with increase of the flow rate. The Thomas model was applied to adsorption of copper and lead ions at bed length, MOCZ particle size, different flow rate and different initial concentration to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The model was found suitable for describing the adsorption process of the dynamic behavior of the MOCZ column. The total adsorbed quantities, equilibrium uptakes and total removal percents of Cu(II) and Pb(II) related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different conditions. The results suggested that MOCZ could be used as an adsorbent for an efficient removal of copper and lead ions from aqueous solution. The removal of metal ion was decreased when other additional heavy metal ion was added, but the total saturation capacity of MOCZ for copper and lead ions was not significantly decreased. This competitive adsorption also showed that adsorption of lead ions was decreased insignificantly when copper ions was added to the influent, whereas a dramatic decrease was observed on the adsorption of copper ions by the presence of lead ions. The removal of copper and lead ion by MOCZ columns followed the descending order: Pb(II) > Cu(II). The adsorbed copper and lead ions were easily desorbed from MOCZ with 0.5 mol l(-1) HNO3 solution.  相似文献   

3.
Titanate nanotubes (TNs) with specific surface areas of 272.31 m(2)g(-1) and pore volumes of 1.264 cm(3)g(-1) were synthesized by alkaline hydrothermal method. The TNs were investigated as adsorbents for the removal of Pb(II) and Cd(II) from aqueous solutions. The FT-IR analysis indicated that Pb(II) and Cd(II) adsorption were mainly ascribed to the hydroxyl groups in the TNs. Batch experiments were conducted by varying contact time, pH and adsorbent dosage. It was shown that the initial uptake of each metal ion was very fast in the first 5 min, and adsorption equilibrium was reached after 180 min. The adsorption of Pb(II) and Cd(II) were found to be maximum at pH in the range of 5.0-6.0. The adsorption kinetics of both metal ions followed the pseudo-second-order model. Equilibrium data were best fitted with the Langmuir isotherm model, and the maximum adsorption capacities of Pb(II) and Cd(II) were determined to be 520.83 and 238.61 mg g(-1), respectively. Moreover, more than 80% of Pb(II) and 85% of Cd(II) adsorbed onto TNs can be desorbed with 0.1M HCl after 3h. Thus, TNs were considered to be effective and promising materials for the removal of both Pb(II) and Cd(II) from wastewater.  相似文献   

4.
A facile synthetic technique for the formation of high-purity, stoichiometric 1:1 and 1:2 molecular ratio photo-active materials of lead(II) bromide and lead(II) iodide with 1,10-phenanthroline is described. The method results in the formation of analytically high-purity crystalline materials which are light-sensitive but air-stable. Elemental analyses and X-ray powder diffraction were used to characterize the materials.  相似文献   

5.
Pb(II) and Cd(II) removal from aqueous solutions by olive cake   总被引:1,自引:0,他引:1  
The removal of heavy metals from wastewater using olive cake as an adsorbent was investigated. The effect of the contact time, pH, temperature, and concentration of adsorbate on adsorption performance of olive cake for Pb(II) and Cd(II) ions were examined by batch method. Adsorption of Pb(II) and Cd(II) in aqueous solution onto olive cake was studied in single component. After establishing the optimum conditions, elution of these ions from the adsorbent surface was also examined. The optimum sorption conditions were determined for two elements. Maximum desorption of the Pb(II) and Cd(II) ions were found to be 95.92 and 53.97% by 0.5M HNO(3) and 0.2M HCl, respectively. The morphological analysis of the olive cake was performed by the scanning electron microscopy (SEM).  相似文献   

6.
The preparation, characterization, and sorption properties for Cu(II) and Pb(II) of manganese oxide coated sand (MOCS) were investigated. A scanning electron microscope (SEM), X-ray diffraction spectrum (XRD) and BET analyses were used to observe the surface properties of the coated layer. An energy dispersive analysis of X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) were used for characterizing metal adsorption sites on the surface of MOCS. The quantity of manganese on MOCS was determined by means of acid digestion analysis. The adsorption experiments were carried out as a function of solution pH, adsorbent dose, ionic strength, contact time and temperature. Binding of Cu(II) and Pb(II) ions with MOCS was highly pH dependent with an increase in the extent of adsorption with the pH of the media investigated. After the Cu(II) and Pb(II) adsorption by MOCS, the pH in solution was decreased. Cu(II) and Pb(II) uptake were found to increase with the temperature. Further, the removal efficiency of Cu(II) and Pb(II) increased with increasing adsorbent dose and decreased with ionic strength. The pseudo-first-order kinetic model, pseudo-second-order kinetic model, intraparticle diffusion model and Elovich equation model were used to describe the kinetic data and the data constants were evaluated. The pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) and Pb(II) onto MOCS, suggesting that the adsorption mechanism might be a chemisorption process. The activation energy of adsorption (E(a)) was determined as Cu(II) 4.98 kJ mol(-1) and Pb(II) 2.10 kJ mol(-1), respectively. The low value of E(a) shows that Cu(II) and Pb(II) adsorption process by MOCS may involve a non-activated chemical adsorption and a physical sorption.  相似文献   

7.
Alternanthera philoxeroides biomass, a type of freshwater macrophyte, was used for the sorptive removal of Ni(II), Zn(II) and Cr(VI) from aqueous solutions. Variables of the batch experiments include solution pH, contact time, particle size and temperature. The biosorption capacities are significantly affected by solution pH. Higher pH favors higher Ni(II), Zn(II) removal, whereas higher uptake of Cr(VI) is observed as the pH is decreased. A two-stage kinetic behavior is observed in the biosorption of Ni(II), Zn(II) and Cr(VI): very rapid initial biosorption in a few minutes, followed by a long period of a slower uptake. It is noted that an increase in temperature results in a higher Ni(II), Zn(II) and Cr(VI) loading per unit weight of the sorbent. Decreasing the particle sizes of the Alternanthera philoxeroides biomass leads to an increase in the Ni(II), Zn(II) and Cr(VI) uptake per unit weight of the sorbent. All isothermal data are fairly well fitted with Langmuir equations. The thermodynamic parameter, DeltaG degrees, were calculated. The negative DeltaG degrees values of Cr(VI), Ni(II) and Zn(II) at various temperatures confirm the adsorption processes are spontaneous.  相似文献   

8.
The adsorption equilibrium of MOCS and the Cu(II) and Pb(II) ions removal capacity by MOCS in single-(non-competitive) and binary-(competitive) component sorption systems from aqueous solutions were investigated. The equilibrium data were analyzed using the Langmuir, Freundlich, Temkin and Redlich-Peterson isotherms. The characteristic parameters for each isotherm were determined. The Langmuir and Redlich-Peterson isotherms provided the best correlation for both Cu(II) and Pb(II) onto MOCS. From the Langmuir isotherms, maximum adsorption capacities of MOCS towards Cu(II) and Pb(II) are determined at different temperature. The maximum adsorption capacity of Cu(II) and Pb(II) per gram MOCS in single component sorption systems were from 5.91 and 7.71 micromol to 7.56 and 9.22 micromol for the temperature range of 288-318 K, respectively. The order of affinity based on a weight uptake by MOCS was as follows: Pb(II)>Cu(II). The same behavior was observed during competitive adsorption that is in the case of adsorption from their binary solution. The thermodynamic parameters (DeltaG degrees , DeltaH degrees , and DeltaS degrees) for Cu(II) and Pb(II) sorption on MOCS were also determined from the temperature dependence. This competitive adsorption showed that the uptake of each metal was considerably reduced with an increasing concentration of the other, the adsorption of Cu(II) being more strongly influenced by Pb(II) than vice versa due to the higher affinity of MOCS for the latter.  相似文献   

9.
The efficiency of eucalyptus bark as a low cost sorbent for removing cadmium ions from aqueous solution has been investigated in batch mode. The equilibrium data could be well described by the Langmuir isotherm but a worse fit was obtained by the Freundlich model. The five linearized forms of the Langmuir equation as well as the non-linear curve fitting analysis method were discussed. Results show that the non-linear method may be a better way to obtain the Langmuir parameters. Maximum cadmium uptake obtained at a temperature of 20 degrees C was 14.53mgg(-1). The influence of temperature on the sorption isotherms of cadmium has been also studied. The monolayer sorption capacity increased from 14.53 to 16.47 when the temperature was raised from 20 to 50 degrees C. The DeltaG degrees values were negative, which indicates that the sorption was spontaneous in nature. The effect of experimental parameters such as contact time, cadmium initial concentration, sorbent dose, temperature, solution initial pH, agitation speed, and ionic strength on the sorption kinetics of cadmium was investigated. Pseudo-second-order model was evaluated using the six linear forms as well as the non-linear curve fitting analysis method. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model using the non-linear method. The pseudo-second-order model parameters were function of the initial concentration, the sorbent dose, the solution pH, the agitation speed, the temperature, and the ionic strength.  相似文献   

10.
Removal of lead(II) and zinc(II) from aqueous solutions was studied using chemically modified distillation sludge of rose (Rosa centifolia) petals by pretreatment with NaOH, Ca(OH)(2), Al(OH)(3), C(6)H(6), C(6)H(5)CHO and HgCl(2). The adsorption capacity of biomass was found to be significantly improved. NaOH pretreated biomass showed remarkable increase in sorption capacity. Maximum adsorption of both metal ions was observed at pH 5. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. The overall adsorption process was best described by pseudo second order kinetics. The thermodynamic assessment of the metal ion-Rosa centifolia biomass system indicated the feasibility and spontaneous nature of the process and DeltaG degrees was evaluated as ranging from -26.9501 to -31.652 KJmol(-1) and -24.1905 to -29.8923KJmol(-1) for lead(II) and zinc(II) sorption, respectively, in the concentration range 10-640mgL(-1). Distribution coefficient (D) showed that the concentration of metal ions at the sorbent-water interface is higher than the concentration in the continuous aqueous phase. Maximum adsorption capacity of biomass tends to be in the order Pb(II) (87.74mgg(-1))>Zn(II) (73.8mgg(-1)) by NaOH pretreated biomass.  相似文献   

11.
The sorption of lead and cadmium from aqueous solutions by grape stalk waste (a by-product of wine production) was investigated. The effects of the contact time, pH of the solution, ionic medium, initial metal concentration, other metal ions present and ligands were studied in batch experiments at 20 degrees C. Maximum sorption for both metals was found to occur at an initial pH of around 5.5. The equilibrium process was described well by the Langmuir isotherm model, with maximum grape stalk sorption capacities of 0.241 and 0.248 mmol g(-1) for Pb(II) and Cd(II), respectively, at pH around 5.5. Kinetic studies showed good correlation coefficients for a pseudo-second-order kinetic model. The presence of NaCl and NaClO(4) in the solution caused a reduction in Pb and Cd sorption, the latter being more strongly suppressed. The presence of other metals in the uptake process did not affect the removal of Pb, while the Cd uptake was much reduced. HCl or EDTA solutions were able to desorb lead from the grape stalks completely, while an approximately 65% desorption yield was obtained for cadmium. From the results obtained it seems that other mechanisms, such as surface complexation and electrostatic interactions, must be involved in the metal sorption in addition to ion exchange.  相似文献   

12.
Studies on the biosorptive ability of Gossypium hirsutum (Cotton) waste biomass outlined that smaller size of biosorbent (0.355mm), higher biomass dose (0.20g), 5 pH and 100mg/L initial Pb(II) concentration were more suitable for enhanced Pb(II) biosorption from aqueous medium. The Langmuir isotherm model and pseudo second order kinetic model fitted well to the data of Pb(II) biosorption. Highly negative magnitude of Gibbs free energy (DeltaG degrees ) indicated that the process was spontaneous in nature. In addition to this surface coverage and distribution coefficient values of Pb(II) biosorption process were also determined. At optimized conditions Pb(II) uptake was more rapid in case of industrial effluents in comparison to synthetic solutions. FTIR spectroscopic analysis revealed that the main functional groups involved in the uptake of Pb(II) on the surface of G. hirsutum biomass were carboxyl, carbonyl, amino and alcoholic.  相似文献   

13.
The isotherms, kinetics and thermodynamics of Cd(II), Zn(II) and Pb(II) biosorption by Penicillium simplicissimum were investigated in a batch system. The effects of pH, initial metal ions concentration, biomass dose, contact time, temperature and co-ions on the biosorption were studied. Adsorption data were well described by both the Redlich–Peterson and Langmuir model. Chemical ion-exchange was found to be an important process based on free energy value from Dubini–Radushkevich isotherm for all metal ions. The results of the kinetic studies of all metal ions at different temperature showed that the rate of adsorption followed the pseudo second-order kinetics well. The thermodynamics constants ΔG°, ΔH° and ΔS° of the adsorption process showed that biosorption of Cd(II), Zn(II) and Pb(II) ions on Penicillium simplicissimum were endothermic and spontaneous.  相似文献   

14.
The bacterial strain Bacillus sp. ATS-2 isolated from Pb(II) polluted soil was immobilized with a silica matrix and Pb(II) biosorption properties of immobilized biosorbent were examined. Optimum biosorption conditions were investigated in the fixed bed column with the variation in the parameters of pH, bed length, flow rate and influent concentration. The Pb(II) biosorption equilibrium was attained within 60 min and the maximum biosorption yield for silica gel immobilized Bacillus sp. ATS-2 was determined as 91.73% at pH 4.0. The higher biosorption yields were observed at flow rates of 60 and 180 ml h(-1). The optimum bed length for the column was found as 10 cm. Data obtained from batch studies were evaluated by Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherm models. The maximum monolayer capacity of Bacillus sp. ATS-2 for Pb(II) was 2.36 x 10(-5) mol g(-1). The involvement of the functional groups on the surface of immobilized cells in biosorption process was also evaluated by FTIR spectral analysis.  相似文献   

15.
Batch equilibrium sorption experiments were used for screening for cost-effective four types of sludge, which were DWS (drinking water treatment plant sludge), LLS (landfill leachate sludge), ADSS (anaerobically digested sewage sludge), and SS (sewage sludge). SS removed cadmium most efficiently from aqueous solution (0.38 mmol/g), and showed the highest desorption efficiency (26.3%). Only the SS can be fitted by Langmuir isotherm model (r2 = 0.996). The FT-IR spectra of SS and cadmium loaded SS indicated that carboxyl groups were major binding sites of cadmium binding sites. In kinetic experiment, it was found that the uptake of the metal by the SS was accompanied with proton release, indicating that the metal binding occurs via an ion exchange as well as by electrostatic interaction between carboxylate groups and cadmium ions. This sorbent may have a potential for use as high-value biosorbent of heavy metals and it deserves further investigations into the details of practical application, for example on the development of desorption methods and on sorption process optimization.  相似文献   

16.
In this paper, sorption potentials of uranium ions were studied using alginate polymer beads in diluted aqueous solutions. The ability of alginate beads to adsorb uranium(VI) from aqueous solution has been studied at different optimized conditions of pH, U(VI) concentration, contact time, biomass dosage and temperature. In order to determine the adsorption characteristics, Langmuir, Freundlich, and Dubinin–Radushkevich adsorption isotherms were applied to the adsorption data. The thermodynamic parameters such as variations of enthalpy ΔH, entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of ln Kd vs. 1/T plots. The results suggested that alginate beads could be suitable as a sorbent material for adsorption and removal of uranium ions from dilute aqueous solutions.  相似文献   

17.
Biosorption is the effective method for the removal of heavy metal ions from wastewaters. Results are presented showing the sorption of Pb(II) from solutions by biomass of commonly available, filamentous green algae Spirogyra sp. Batch experiments were conducted to determine the biosorption properties of the biomass and it was observed that the maximum adsorption capacity of Pb(II) ion was around 140mgmetal/g of biomass at pH 5.0 in 100min with 200mg/L of initial concentration. Temperature change in the range 20-40 degrees C affected the adsorption capacity and the nature of the reaction was found to be endothermic in nature. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. Various properties of the algae, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, thermal analysis by TGA, surface area calculation by BET method, surface morphology with scanning electron microscope images and surface functionality by FTIR. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. The results indicated that the biomass of Spirogyra sp. is an efficient biosorbent for the removal of Pb(II) from aqueous solutions.  相似文献   

18.
In this study, the effect of temperature, pH and initial metal concentration on Pb(II) biosorption on modified quebracho tannin resin (QTR) was investigated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to investigate QTR structure and morphology. Besides, the specific BET surface area and zeta-potential of the QTR were analysed. Thermodynamic functions, the change of free energy (DeltaG degrees), enthalpy (DeltaH degrees) and entropy (DeltaS degrees) of Pb adsorption on modified tannin resin were calculated as -5.43 kJ mol(-1) (at 296+/-2K), 31.84 kJ mol(-1) and 0.127 J mmol(-1) K(-1), respectively, indicating the spontaneous, endothermic and the increased randomness nature of Pb(2+) adsorption. The kinetic data was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model. The results suggested that the pseudo-second-order model (R(2)>0.999) was the best choice among all the kinetic models to describe the adsorption behavior of Pb(II) onto QTR. Langmuir, Freundlich and Tempkin adsorption models were used to represent the equilibrium data. The best interpretation for the experimental data was given by the Langmuir isotherm and the maximum adsorption capacity (86.207 mg g(-1)) of Pb(II) was obtained at pH 5 and 296 K.  相似文献   

19.
In this study, different nanoscale zero-valent irons (nZVI) were prepared in order to improve their stability and reactivity to heavy metal lead (Pb (II)). The composition, particle size and morphology of obtained nZVI were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM). The effects of nZVI dosage, pH, initial Pb (II) concentration and reaction time on the removal efficacy of Pb (II) were investigated. The results show that undried nZVI has more active sites due to its weaker oxidation, and thus the removal efficiency of Pb(II) by undried nZVI was higher than that by dried nZVI. As a result, the same removal efficiency could be achieved with the use of less undried nZVI for the identical concentration of Pb(II). Furthermore, the experimental procedure could be apparently simplified, which eliminates the steps of washing, separation and dehydration compared with the traditional preparation method. The experimental data could be well fitted by the Langmuir adsorption isotherm model, and the maximum adsorption capacity of dried and undried nZVI is 671.14 and 807.23?mg·g?1 at pH 6, respectively. The experimental data followed the pseudo second-order kinetic model with a kinetic constant of 7.65?×?10?4 and 1.39?×?10?3 for undried and dried nZVI, respectively. In conclusion, undried nZVI had high adsorption capacity and adsorption rate for Pb(II) in the solution.  相似文献   

20.
Sorption of traces of Cd(II) ions onto beach sand is investigated as a function of nature and concentration of electrolyte (10(-4) to 10(-2)M nitric, hydrochloric and perchloric acids, pH 2-10 buffers and deionized water), shaking time 5-40min, shaking speed 50-200strokes/min, dosage of sand (50-1000mg/15cm(3)), concentration of sorbate (1.04x10(-6) to 1.9x10(-4)M) and temperature (293-323K). Maximum sorption of Cd(II) ions (approximately 66%) is achieved from deionized water using 300mg/15cm(3) sand in 20min. The data are successfully tested by Langmuir, Freundlich and Dubinin-Redushkevich (D-R) sorption isotherms. The values for characteristic Langmuir constants Q=13.31+/-0.20micromol/g and of b=(6.56+/-0.53)x10(3)dm(3)/mol, Freundlich constants A=2.23+/-1.16mmol/g and 1/n=0.70+/-0.05 of (D-R) constants beta=-0.005068+/-0.000328kJ(2)/mol(2), X(m)=46.91+/-11.91micromol/g and energy E=9.92+/-0.32kJ/mol have been estimated. Kinetics of sorption has been studied by applying Morris-Weber, Richenberg and Lagergren equations. The sorption follows first order rate equation resulting 0.182+/-0.004min(-1) The thermodynamic parameters DeltaH=32.09+/-2.92kJ/mol, DeltaS=111.0+/-9.5J/molK and DeltaG=-1.68+/-0.02kJ/mol are evaluated. The influence of common ions on the sorption of Cd(II) ions is also examined. Some common ions reduce the sorption while most of the ions have very little effect. It can be concluded that beach sand may be used as an alternative for the expensive synthetic sorbents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号