首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metal sorption by calcium alginate beads from Laminaria digitata   总被引:1,自引:0,他引:1  
Alginate with a high M/G ratio, extracted from Laminaria digitata, was evaluated for Cu(2+), Cd(2+) and Pb(2+) sorption in acidic solutions, in the form of calcium cross-linked beads. The high M/G ratio of alginate extracted from this algal species is most likely the determining factor for the increased adsorption capacity of the investigated metals, indicating that the mannuronic acid is responsible for the ion exchange mechanism. The data obtained from the batch experiments have been interpreted with Langmuir, Freundlich and Sips models. The Sips equation provided the best fit with the experimental results, indicating sorption sites heterogeneity for the material. The pH was found to have a significant effect on the process, with sorption capacity reaching a maximum at pH 4.5, indicating a competition mechanism between H(+) and metal ions. Kinetic experiments were performed at the optimum pH. For the interpretation of the kinetic experiments the Linear Adsorption Model was employed and diffusion coefficients were determined. The model fits the experimental data at higher concentrations, where the adsorbed quantity remains almost constant. Finally, a simplified expression of the batch kinetic adsorption model was employed. The model, predicts adequately, not only the diffusivity values, but also the concentration profiles inside the spherical particles.  相似文献   

2.
3.
Removal of U(VI) ions from aqueous solutions was investigated using synthetic akaganeite-type nanocrystals. Nanocrystals of iron oxyhydroxides were synthesized with two different methods and then compared their adsorption capacities. Akaganeite (β-FeOOH) was synthesized in the laboratory by precipitation from aqueous solution of Fe(III) chloride and different precipitating agents. The relative importance of test parameters like solution pH, contact time, temperature and concentration of adsorbate on adsorption performance of akaganeite for U(VI) ion were studied. Typical adsorption isotherms (Langmuir, Freundlich, Dubinin-Raduskevich) were determined for the mechanism of sorption process. Also the thermodynamic constants (ΔH°, ΔS° and ΔG°) were calculated. The product materials were examined by powder X-ray diffraction for crystalline phase identification and scanning electron microscope (SEM).  相似文献   

4.
The adsorption of alginate gel (AG) beads and AG with activated carbon entrapped (AG–AC) beads prepared using different types of metal ions were investigated by measuring the removal of several organic compounds with different charges and size. AG–AC beads prepared in a CaCl2 solution adsorbed strongly positively charged compounds as well as electrically neutral and low molecular weight compounds such as p-chlorophenol. However, a high molecular weight humic acid was not adsorbed by AG–AC. The AG–AC selectively adsorbed p-chlorophenol from a humic acid solution. The adsorption capacity obtained from the adsorption isotherm of AC entrapped in AG was compared with that of AC. The AG–AC beads prepared in a solution of FeCl3 were able to specifically adsorb negatively charged gallic acid. Thus, entrapping AC into AG resulted in the selective adsorption.  相似文献   

5.
This paper deals with an investigation on coir-based adsorbent, puresorbe, in the removal of chromium(VI) from the aqueous solutions. The adsorption of chromium(VI) was carried out by varying the parameters such as agitation time, metal concentration, adsorbent dose, temperature and pH. The experimental isotherm data were analyzed using Langmuir, Freundlich and Redlich and Peterson isotherms. Adsorption followed second order rate expression for the particle size 250–500 μm at pH 2. The monolayer adsorption capacity is 76.92 mg chromium(VI) per gram of puresorbe. Thermodynamic parameters show the endothermic nature of chromium(VI) adsorption. Desorption study carried out using distilled water adjusted to pH of 2–10, suggests that chemisorption might be the mode of adsorption.  相似文献   

6.
Removal of fluoride from aqueous solution using protonated chitosan beads   总被引:5,自引:0,他引:5  
In the present study, chitosan in its more usable bead form has been chemically modified by simple protonation and employed as a most promising defluoridating medium. Protonated chitosan beads (PCB) showed a maximum defluoridation capacity (DC) of 1664mgF-/kg whereas raw chitosan beads (CB) possess only 52mgF-/kg. Sorption process was found to be independent of pH and altered in the presence of other co-existing anions. The sorbents were characterized using FTIR and SEM with EDAX analysis. The fluoride sorption on PCB follows both Freundlich and Langmuir isotherms. Thermodynamic parameters, viz., DeltaG degrees , DeltaH degrees DeltaS degrees and Ea indicate that the nature of fluoride sorption is spontaneous and endothermic. The sorption process follows pseudo-second-order and intraparticle diffusion kinetic models. 0.1M HCl was identified as the best eluent. The suitability of PCB has been tested with field samples collected from a nearby fluoride-endemic area.  相似文献   

7.
The potential to remove Cr(VI) ion from aqueous solutions through biosorption using, the shells of Walnut (WNS) (Juglans regia), Hazelnut (HNS) (Corylus avellana) and Almond (AS) (Prunus dulcis) was investigated in batch experiments. The equilibrium adsorption level was determined to be a function of the solution contact time and concentration. Kinetic experiments revealed that the dilute chromium solutions reached equilibrium within 100 min. The biosorptive capacity of the shells was dependent on the pH of the chromium solution, with pH 3.5 being optimal. Adsorption of Cr(VI) ion uptake is in all cases pH-dependent showing a maximum at equilibrium pH values between 2.0 and 3.5, depending on the biomaterial, that correspond to equilibrium pH values of 3.5 for (WNS), 3.5 for (HNS) and 3.2 for (AS). The adsorption data fit well with the Langmuir isotherm model. The sorption process conformed to the Langmuir isotherm with maximum Cr(VI) ion sorption capacities of 8.01, 8.28, and 3.40 mg/g for WNS, HNS and AS, respectively. Percentage removal by WNS, HNS and AS was 85.32, 88.46 and 55.00%, respectively at a concentration of 0.5 mM. HNS presented the highest adsorption capacities for the Cr(VI) ion.  相似文献   

8.
This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution.  相似文献   

9.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the green alga (Ulva lactuca) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by U. lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of U. lactuca biomass for Pb(II) and Cd(II) ions was found to be 34.7mg/g and 29.2mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 10.4kJ/mol for Pb(II) biosorption and 9.6kJ/mol for Cd(II) biosorption, indicating that the biosorption of both metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Pb(II) and Cd(II) ions onto U. lactuca biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

10.
The aim of this study was to investigate the characteristics of alginate beads prepared by ionotropic gelation in which structurally similar drugs were incorporated. For this purpose theophylline and theobromine were selected as model drugs. The influence of incorporated drugs on bead characteristics such as size, shape, and morphology, as well as encapsulation efficiency, was examined. It was found that theobromine as well as theophylline content in beads significantly decreased with increasing hardening time due to drug diffusion into the hardening media. In theobromine beads the drug content was extremely improved by dropping the alginate and drug solution into an acidic calcium chloride solution, while theophylline content was to some extent improved by the hardening of beads in a calcium chloride solution saturated with the drug. The most evident difference between theophylline and theobromine beads was in their shape and morphology. Theobromine beads were round, while theophylline ones had an irregular shape with an extremely wrinkled surface. The distinction in shape was highly dependent on drug content. Additionally, it was demonstrated that beads' shape was dependent on preparation conditions as well. On the basis of x-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) analyses and scanning electron microscope (SEM) photographs it was found that the most of the drug in bead was present in an amorphous state. Therefore, it is suggested that some drug-alginate interactions could be present in beads and might be responsible for the different shape of theophylline and theobromine beads.

Thus it can be concluded that the preparation of beads by ionotropic gelation cannot be generalized even though structurally similar drugs are incorporated.  相似文献   

11.
The removal of zinc ions from aqueous solutions on the biomass of Azadirachta indica bark has been studied by using batch adsorption technique. The biosorption studies were determined as a function of contact time, pH, initial metal ion concentration, average biosorbent size and biosorbent dosage. The equilibrium metal uptake was increased and percentage biosorption was decreased with an increase in the initial concentration and particle size of biosorbent. The maximum zinc biosorption occurred at pH 6 and percentage biosorption increases with increase in the biosorbent dosage. Experimental data obtained were tested with the adsorption models like Langmuir, Freundlich and Redlich-Peterson isotherms. Biosorption isothermal data were well interpreted by Langmuir model with maximum biosorption capacity of 33.49mg/g of zinc ions on A. indica bark biomass and kinetic data were properly fitted with the pseudo-second-order kinetic model.  相似文献   

12.
Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (qmax 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (qmax 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.  相似文献   

13.
The biosorption of copper(II) ions from aqueous solution by Tectona grandis L.f. was studied in a batch adsorption system as a function of pH, metal ion concentration, adsorbent concentration and adsorbent size. The biosorption capacities and rates of copper(II) ions onto T. grandis L.f. were evaluated. The Langmuir, Freundlich, Redlich-Peterson and Temkin adsorption models were applied to describe the isotherms and isotherm constants. Biosorption isothermal data could be well interpreted by the Langmuir model with maximum adsorption capacity of 15.43 mg/g of copper(II) ion on T. grandis L.f. leaves powder. The kinetic experimental data properly correlated with the second-order kinetic model. Various thermodynamic parameters such as deltaG(o), deltaH(o), and deltaS(o) were calculated indicating that this system was a spontaneous and exothermic process.  相似文献   

14.
The ability of white-rot fungus, Pycnoporus sanguineus to adsorb copper (II) ions from aqueous solution is investigated in a batch system. The live fungus cells were immobilized into Ca-alginate gel to study the influence of pH, initial metal ions concentration, biomass loading and temperature on the biosorption capacity. The optimum uptake of Cu (II) ions was observed at pH 5 with a value of 2.76mg/g. Biosorption equilibrium data were best described by Langmuir isotherm model followed by Redlich-Peterson and Freundlich models, respectively. The biosorption kinetics followed the pseudo-second order and intraparticle diffusion equations. The thermodynamic parameters enthalpy change (10.16kJ/mol) and entropy change (33.78J/molK) were determined from the biosorption equilibrium data. The FTIR analysis showed that OH, NH, CH, CO, COOH and CN groups were involved in the biosorption of Cu (II) ions onto immobilized cells of P. sanguineus. The immobilized cells of P. sanguineus were capable of removing Cu (II) ions from aqueous solution.  相似文献   

15.
Grape waste as a biosorbent for removing Cr(VI) from aqueous solution   总被引:3,自引:0,他引:3  
Grape waste generated in wine production is a cellulosic material rich in polyphenolic compounds which exhibits a high affinity for heavy metal ions. An adsorption gel was prepared from grape waste by cross-linking with concentrated sulfuric acid. It was characterized and utilized for the removal of Cr(VI) from synthetic aqueous solution. Adsorption tests were conducted in batch mode to study the effects of pH, contact time and adsorption isotherm of Cr(VI), which followed the Langmuir type adsorption and exhibited a maximum loading capacity of 1.91 mol/kg at pH 4. The adsorption of different metal ions like Cr(VI), Cr(III), Fe(III), Zn(II), Cd(II) and Pb(II) from aqueous solution at different pH values 1-5 has also been investigated. The cross-linked grape waste gel was found to selectively adsorb Cr(VI) over other metal ions tested. The results suggest that cross-linked grape waste gel has high possibility to be used as effective adsorbent for Cr(VI) removal.  相似文献   

16.
The objective of this study was to investigate the Cr(VI) removal efficiency of sunflower waste from aqueous system under different process conditions. Two adsorbents were prepared by pre-treating the sunflower stem waste. One adsorbent was prepared by boiling it and second adsorbent was prepared by treating it with formaldehyde. Batch mode experiments were carried out as a function of solution pH, adsorbent dosage, Cr(VI) concentration and contact time. FT-IR spectra and SEMs of the adsorbents were recorded to explore the number and position of functional groups available for the binding of Cr(VI) ions and morphology of the studied adsorbents. The removal of chromium was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration and other studied process parameters. Maximum metal removal was observed at pH 2.0. The efficiencies of boiled sunflower stem absorbent and formaldehyde-treated sunflower stem absorbent for the removal of Cr(VI) were 81.7 and 76.5%, respectively for dilute solutions at 4.0g/L adsorbent dose. The applicability of Langmuir, Freundlich and Dubinin-Radushkevich isotherms was also tested. The results revealed that the hexavalent chromium is considerably adsorbed on sunflower stem and it could be an economical method for the removal of hexavalent chromium from aqueous systems.  相似文献   

17.
In the present investigation, a fresh water green algae spirogyra spp. was used as an inexpensive and efficient biosorbent for Cr(III) removal from aqueous solution. The algal biomass was treated with 0.1M NaOH, 0.2M CaCl(2) and 5% HCHO. The biosorption efficiency was compared with untreated biomass. The effects of various physico-chemical parameters were studied, e.g. pH 3.0-6.0, initial metal ions concentration 20-150mgL(-1), algal dose 1.0-3.0gL(-1), and contact time 15-180min, respectively. Biosorption of Cr(III) is highly pH dependent. Maximum 81.02% adsorption of Cr(III) was observed with 0.2M CaCl(2) treated biomass at pH 5.0. Removal of Cr(III) was more than 70% in 45min of contact time with different treated and untreated algal biomass at concentration 30mgL(-1). Maximum metal uptake (Q(max)) was observed as 30.21mgg(-1) with 0.2M CaCl(2) treated algal biomass indicate good biosorbents than other treated and untreated biomass. The high values of correlation coefficient (r(2)<0.90) indicate equilibrium data of treated and untreated form of algal biomass well fitted in Freundlich than Langmuir isotherms model equations.  相似文献   

18.
This study focused on the biosorption of total chromium onto red algae (Ceramium virgatum) biomass from aqueous solution. Experimental parameters affecting biosorption process such as pH, contact time, biomass dosage and temperature were studied. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of C. virgatum biomass for total chromium was found to be 26.5 mg/g at pH 1.5 and 10 g/L biomass dosage, 90 min equilibrium time and 20 °C. From the D–R isotherm model, the mean free energy was calculated as 9.7 kJ/mol, indicating that the biosorption of total chromium was taken place by chemisorption. The calculated thermodynamic parameters (ΔG°, ΔH°and ΔS°) showed that the biosorption of total chromium onto C. virgatum biomass was feasible, spontaneous and exothermic at 20–50 °C. Kinetic evaluation of experimental data showed that the biosorption processes of total chromium followed well pseudo-second-order kinetics.  相似文献   

19.
This study evaluated the feasibility of using a solid waste from the leather industry as an adsorbent for removal of Cr(VI) and As(V) from aqueous media. The adsorbent material was characterized by chemical analyses, infrared spectroscopy, and scanning electronic microscopy (SEM) prior to reaction in order to assess its surface properties. Langmuir and Freundlich equations were used for analyzing the experimental data, which showed a better fit to the Langmuir model, thus suggesting a monolayer adsorption process in the surface of the adsorbent. The high amounts of Cr(VI)-133 mg g(-1) and As(V)-26 mg g(-1) adsorbed demonstrates the great potential for using this solid waste from the leather industry as a low-cost alternative to the traditionally used adsorbent materials.  相似文献   

20.
Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI)>Pb>Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号