首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Letters》2007,61(4-5):1034-1038
Polycrystalline CdSe thin films have been electrodeposited at room temperature on stainless steel (ss) and fluorine doped tin oxide (FTO) coated glass substrate from aqueous electrolytes containing salts of cadmium acetate and selenium dioxide. The pH of the bath is varied from 1.75, at the interval of 0.25, to 3. The effect of pH on the photoelectrochemical (PEC), structural and optical properties of the deposited film is studied. The pH of the bath is optimized by the PEC technique and is observed to be 2.75. The analysis of the XRD patterns show that the deposited CdSe material is polycrystalline with a hexagonal crystal structure. SEM study shows that the total substrate surface is well covered by uniformly distributed spherical shaped grains. The optical absorption studies reveal that the pH of the electrolytic solution has a significant effect on the band gap of the CdSe thin film. The transition involved is direct with band gap energy Eg of 1.72 eV.  相似文献   

2.
Thin films of CdSe were deposited by potentiostatic mode on different substrates such as stainless steel, titanium and fluorine tin-oxide (FTO) coated glass using non-aqueous bath. The preparative parameters were optimized to get good quality CdSe thin films. These films were characterized by X-ray diffraction (XRD), optical absorption and photoelectrochemical (PEC) techniques. XRD study revealed that the films were polycrystalline in nature with hexagonal phase. Optical absorption study showed that CdSe films were of direct band gap type semiconductor with a band gap energy of 1·8 eV. PEC study revealed that CdSe film deposited on FTO coated glass exhibited maximum values of fill factor (FF) and efficiency (η) as compared to the films deposited on stainless steel and titanium substrate.  相似文献   

3.
In this letter, TiO2 coated ITO mesoporous film was prepared by dipping doctor-blade ITO mesoporous film in TiO2 sol, followed by sintering at 500 °C for 30 min. The CdS quantum dots (QDs) were deposited on TiO2 coated ITO mesoporous film using sequential chemical bath deposition (S-CBD) method to form a three-dimensional (3D) electrode. The photo-activity of ITO mesoporous film/TiO2/CdS electrode was investigated by forming a photoelectrochemical cell, which indicated that the ITO mesoporous film/TiO2/CdS electrode was efficient in photoelectrochemical cell as a working electrode. The 3D electrode showed lower performance than the conventional electrode of TiO2 mesoporous film/CdS, and more works are needed to improve the performance of 3D electrode.  相似文献   

4.
A photoelectrochemical degradation of reactive blue 19 (RB19) and electricity generation was modeled and optimized in a photocatalytic fuel cell with CNT/TiO2/WO3/CdS/FTO photoanode and Cu2S/FTO photocathode using response surface methodology-central composite design. The coated photocatalyst on fluorine-doped tin oxide (FTO) was characterized by surface and cross-section FESEM, EDX spectrum, EDS mapping, XRD, and DRS analysis. The CNT/TiO2/WO3/CdS and Cu2S were coated on FTO glass by applying the dip coating and combined dip coating-SILAR method, respectively. The efficiency of RB19 and Chemical oxygen demand removal under the optimum circumstances of 15 mg/L dye concentration, pH = 4, and the light intensity of 890 lm were obtained at 99.9 % and 70 % after 4.5 h, respectively. Moreover, the generated current density during the photocatalytic process was calculated at about 41.3 µA/cm2 after 90 min. The effect of air injection, open and closed electrical circuits, light radiation, and adsorption rate of photocatalysts on RB19 removal was examined. The five times reusability confirmed the good stability and photoactivity of coated catalyst on the FTO electrodes at the optimum conditions. The result indicated that the photocatalytic fuel cell is an excellent technology not only for wastewater treatment but also for energy production.  相似文献   

5.
Electrodeposition (ED) has been recognized as a low cost and scalable technique available for fabrication of CdS/CdTe solar cells. Photovoltaic activity of these electrodeposited semiconductor materials drastically depends on the ED growth parameters namely; electrodeposition potential, concentrations and ratios of concentrations of precursors used to prepare the bath electrolyte, pH of the electrolyte, deposition temperature and rate of stirring of the electrolyte. In order to grow thin films with good photovoltaic properties, it is essential to maintain these variables at their optimum ranges of values during electrodepositions. Hence, this study was conducted to investigate the dependence of the properties of electrodeposited CdTe thin film material on the rate of stirring of the bath electrolyte. The CdTe material was grown on glass/FTO (2?×?3 cm2) and glass/FTO/CdS (2?×?3 cm2) surfaces in bath electrolytes containing 1.0 mol/L CdSO4 and 1.0 mmol/L TeO2 solutions at different rates of stirring within the range of 0–350 rpm while keeping the values of pH of the electrolyte, deposition temperature and cathodic deposition potential with respect to the saturated calomel electrode at 2.3, 65 °C and 650 mV respectively. After the heat treatment at 400 °C in air atmosphere, the deposited samples with a good visual appearance were selected and evaluated based on their morphological, elemental, structural, optical and electrical properties in order to identify the optimum range of rate of stirring for electrodeposition of CdTe thin film semiconductors. Results revealed that, rates of stirring in the range of 60–85 rpm in a 100 mL volume of electrolyte containing the substrate and the counter electrodes in the center of the bath with a separation of 2.0 cm between them can electrodeposit CdTe layers exhibiting required levels of morphological, structural, optical and electrical properties on both glass/FTO and glass/FTO/CdS surfaces.  相似文献   

6.
Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin films of fluorescein were deposited on glass, fluorine-tin-oxide (FTO) coated glass with and without atomically layer deposited (ALD) nanocrystalline 20 nm thick anatase TiO2 coating. Surface topology, absorption and emission spectra of the films depend on their thickness and the material of supporting substrate. On a smooth glass surface the dye initially forms islands before merging into a uniform layer after 5 to 10 monolayers. On FTO covered glass the absorption spectra are similar to fluorescein solution in ethanol. Absorption spectra on ALD-TiO2 is red shifted compared to the film deposited on bare FTO. The corresponding emission spectra at λ = 458 nm excitation show various thickness and substrate dependent features, while the emission of films deposited on TiO2 is quenched due to the effective electron transfer to the semiconductor conduction band.  相似文献   

7.
A 3D fluorine‐doped SnO2 (FTO)/FTO‐nanocrystal (NC)/TiO2 inverse opal (IO) structure is designed and fabricated as a new “host and guest” type of composite photoanode for efficient photoelectrochemical (PEC) water splitting. In this novel photoanode design, the highly conductive and porous FTO/FTO‐NC IO acts as the “host” skeleton, which provides direct pathways for faster electron transport, while the conformally coated TiO2 layer acts as the “guest” absorber layer. The unique composite IO structure is fabricated through self‐assembly of colloidal spheres template, a hydrothermal method and atomic layer deposition (ALD). Owing to its large surface area and efficient charge collection, the FTO/FTO‐NC/TiO2 composite IO photoanode shows excellent photocatalytic properties for PEC water splitting. With optimized dimensions of the SnO2 nanocrystals and the thickness of the ALD TiO2 absorber layers, the 3D FTO/FTO‐NC/TiO2 composite IO photoanode yields a photocurrent density of 1.0 mA cm?2 at 1.23 V versus reversible hydrogen electrode (RHE) under AM 1.5 illumination, which is four times higher than that of the FTO/TiO2 IO reference photoanode.  相似文献   

8.
A novel ZnO/CdS/TiO2 nanorod array composite structure was fabricated by depositing CdS-sensitized layer onto ZnO nanorod arrays via chemical bathing deposition and subsequently coated by TiO2 protection layer via a vacuum dip-coating process. The films were characterized by x-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrum, and UV–Vis diffuse reflectance spectroscopy. For the films severed as the photoanodes, linear sweep voltammetry and transient photocurrent (i ph) were investigated in a three-electrode system. The photoelectrocatalytic activity was evaluated by the degradation of methylene blue (MB) under visible light irradiation. The results show that the oriented ZnO nanorods are adhered by relatively uniform CdS-sensitized layer and coated with TiO2 layer. Both the coated and uncoated CdS-sensitized ZnO nanorod arrays exhibit the visible light response and the photoelectrocatalytic activity on the degradation of MB under visible light irradiation. The ZnO/CdS/TiO2 nanorod array film possesses stable and superior photoelectrocatalytic performance owing to the TiO2 thin layer protecting the CdS from photocorrosion.  相似文献   

9.
In the present study, cadmium sulfide (CdS) thin films were deposited on different substrates [soda glass, fluoride doped tin oxide, and tin doped indium oxide (ITO) coated glass] by a hot plate method. To control the thickness and the reproducibility of the sample production, the thin films were coated at different temperatures and deposition times. The CdS thin films were heated at 400 °C in air and forming gas (FG) atmosphere to investigate the effect of the annealing temperatures. The thickness of the samples, measured by ellipsometry, could be controlled by the deposition time and temperature of the hot plate. The phase formation and structural properties of CdS thin films were studied by X-ray diffraction and scanning electron microscopy, whereas the optical properties were obtained by UV–vis spectroscopy. A hexagonal crystal structure was observed for CdS thin films and the crystallinity improved upon annealing. The structural and optical properties of CdS thin films were also enhanced by annealing at 400 °C in FG atmosphere (95 % N2, 5 % H2). The optical band gap was changed from 2.25 to 2.40 eV at different annealing temperatures and gas atmospheres. A higher electrical conductivity, for the sample annealed at FG, was noticed. The samples deposited on ITO and annealed in FG atmosphere showed the best structural and electrical properties compared to the other samples. CdS thin films can be widely used for application as a buffer layer for copper–indium–gallium–selenide solar cells.  相似文献   

10.
The growth of discontinuous thin films of Ag and Au by low energy ion beam sputter deposition is reported. The study focuses on the role of the film?Csubstrate in determining the shape and size of nanostructures achieved in such films. Ag films were deposited using Ar ion energy of 150?eV while the Au films were deposited with Ar ion energies of 250?C450?eV. Three types of interfaces were investigated in this study. The first set of film?Csubstrate interfaces consisted of Ag and Au films grown on borosilicate glass and carbon coated Cu grids used as substrates. The second set of films was metallic bilayers in which one of the metals (Ag or Au) was grown on a continuous film of the other metal (Au or Ag). The third set of interfaces comprised of discontinuous Ag and Au films deposited on different dielectrics such as SiO2, TiO2 and ZrO2. In each case, a rich variety of nanostructures including self organized arrays of nanoparticles, nanoclusters and nanoneedles have been achieved. The role of the film?Csubstrate interface is discussed within the framework of existing theories of thin film nucleation and growth. Interfacial nanostructuring of thin films is demonstrated to be a viable technique to realize a variety of nanostructures. The use of interfacial nanostructuring for plasmonic applications is demonstrated. It is shown that the surface Plasmon resonance of the metal nanostructures can be tuned over a wide range of wavelengths from 400 to 700?nm by controlling the film?Csubstrate interface.  相似文献   

11.
We prepared a ZnO/TiO2/ZnO multi-layer on quartz glass substrate via electron beam evaporation. Optical and structural properties of the ZnO/TiO2/ZnO multi-layer were investigated. The TiO2 buffer layer is found to improve the crystallinity of the ZnO thin film. A green emission of the ZnO thin film deposited on the TiO2 buffer layer was significantly enhanced due to the increased defect concentration of oxygen vacancy. Photoluminesence spectra measured at 9 K revealed that a violet luminescence at 409 nm was attributed to the draft of the donor's defect levels in the ZnO thin film.  相似文献   

12.
CdS quantum dot sensitized Gd-doped TiO2 nanocrystalline thin films have been prepared by chemical method. X-ray diffraction analysis reveals that TiO2 and Gd-doped TiO2 nanocrystalline thin films are of anatase phase. The absorption spectra revealed that the absorption edge of CdS quantum dot sensitized Gd-doped TiO2 thin films shifted towards longer wavelength side (red shift) when compared to that of CdS quantum dot sensitized TiO2 films. CdS quantum dots with a size of 5 nm have been deposited onto Gd-doped TiO2 film surface by successive ionic layer adsorption and reaction method and the assembly of CdS quantum dot with Gd-doped TiO2 has been used as photo-electrode in quantum dot sensitized solar cells. CdS quantum dot sensitized Gd-doped TiO2 based solar cell exhibited a power conversion efficiency of 1.18 %, which is higher than that of CdS quantum dot sensitized TiO2 (0.91 %).  相似文献   

13.
The influence of the preparation conditions on the structural, morphological and optical properties of TiO2 thin films deposited on silicon substrate (Si), indium tin oxide coated glass (ITO) and alkali-free borosilicate glass (AFG), respectively is studied in this work. The X-ray diffraction analysis revealed that all TiO2 samples had a polycrystalline structure. The TiO2 films coated on Si showed a mixed phase of anatase and rutile while in the case of those on ITO and AFG only the pure anatase phase was observed. The crystallite size within the TiO2 thin films varied with the calcinations temperature, solvent lateral chain and catalyst type. The optical transmittance, band gap, reflective index and porosity were strongly affected by the annealing temperature, substrate nature and solvent.  相似文献   

14.
TiO2 thin films were experimentally coated on glass beads by means of a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor. The morphologies and growth rates of the TiO2 thin films before and after heat treatment were measured for various process conditions. The precursors for the TiO2 films were generated from TTIP by plasma reactions, and they were deposited on the glass beads to become TiO2 thin films. The TiO2 thin films coated on the glass beads became more uniform by heat treatment. The TiO2 thin films grew more quickly on the glass beads with increasing mass flow rate of TTIP, reactor pressure, or rotation speed of the reactor. As the applied electric power decreases, the thickness of the thin films on the glass beads increases. This experimental study shows that the use of a rotating cylindrical PCVD reactor can be a good method to coat high-quality TiO2 thin films uniformly on particles.  相似文献   

15.
S. Karuppuchamy  M. Iwasaki 《Vacuum》2007,81(5):708-712
Crystal structure and microstructural properties of titanium dioxide (TiO2) thin films prepared by cathodic electrodeposition on indium-tin-oxide coated glass substrates from aqueous peroxo-titanium complex solutions have been investigated. The electrodeposited TiO2 thin film electrode exhibited anodic photocurrent upon visible light irradiation, indicating the typical behavior of n-type semiconductor. The photodecomposition of CH3CHO by such thin films on exposure to ultraviolet light illumination was also observed.  相似文献   

16.
《Materials Research Bulletin》2013,48(11):4538-4543
The two step processes of hot filament chemical vapor deposition (HFCVD) and DC sputtering were used to grow graphene like carbon (GLC)–nickel (Ni) nanocomposite thin film on fluorine-doped tin oxide (FTO) glass and applied as counter electrode (CE) for dye sensitized solar cells (DSSCs). The morphological and absorption properties revealed uniform GLC–Ni thin film with reasonable transmittance. The GLC–Ni thin film showed enhanced electrical conductivity as compared to FTO. The good electrocatalytic activity towards iodide ions in redox electrolyte was showed by the prepared GLC–Ni/FTO thin film electrode. The fabricated DSSC with GLC–Ni/FTO counter electrode (CE) presented relatively moderate solar-to-electrical conversion efficiency of ∼3.1% with high short-circuit current density (JSC) of ∼10.03 mA/cm2, open circuit voltage (VOC) of ∼0.663 V with fill factor (FF) of ∼0.45, which might attribute to enhanced electrical conductivity and the electrocatalytic activity of GLC–Ni/FTO CE.  相似文献   

17.
This work reports on the development of CdZn(Se1?xTex)2 thin films utilized as the photoanode for photoelectrochemical cells (PECs). It was found that the incorporation of tellurium plays an important role in determining the optostructural, morphological, compositional and PEC performance of thin films. XRD measurements showed that the deposited thin films are in the mixed phases with a nanocrystalline nature. SEM images indicated that the surface morphology is favourable for effective light absorption in the solar spectrum. The EDS spectrum confirmed that thin film deposition occured in a stoichiometric manner. A detailed quantitative study was also executed using XPS and revealed the presence of Cd2+, Zn2+, Se2? and Te2? elements in the deposited thin film. Finally, the deposited thin films were tested for their photoelectrochemical (PEC) performance. The PEC study illustrated that CdZn(Se1?xTex)2 thin film showed the highest power conversion efficiency (η) of 1.13% among reported values.  相似文献   

18.
In this study, cadmium sulfide (CdS)-sensitized solar cells have been fabricated, where nanoporous titanium oxide (TiO2) photoelectrode of equal thickness has been prepared on SnO2:F coated glass substrate using TiO2 paste. Different amounts of CdS have been deposited by an ammonia-free chemical bath deposition technique with various deposition times. The CdS-sensitized TiO2 photoelectrodes show polycrystalline nature. The optical measurement reveals that absorbance edge of the CdS-sensitized TiO2 photoelectrode extends up to 540 nm and the amount of absorbance increases with the enhancement of CdS-deposition time. The CdS solar cell, with deposition time of 12 min, shows impressive photocurrent and moderate solar cell efficiency.  相似文献   

19.
Preparation of Cobalt tungstate (CoWO4) thin film by spray pyrolysis with ammonical solution as a precursor is presented. The phase and surface morphology characterizations have been carried out by XRD and SEM analysis. The study of optical absorption spectrum in the wavelength range 350 – 850 nm shows direct as well as indirect optical transitions in the thin film material. The d. c. electrical conductivity measurements in the temperature range 310–500 K indicate semiconducting behavior of the thin film. The thin films deposited on fluorine doped tin oxide (FTO) coated conducting glass substrates were used as a photoanode in photovoltaic electrochemical (PVEC) cell with configuration: CoWO4 | Ce4+, Ce3+ | Pt; 0.1 M in 0.1 N H2SO4. The PVEC characterization reveals the fill factor and power conversion efficiency to be 0.36 and 0.62%, respectively. The flat band potential is found to be −0.18 V (SCE).  相似文献   

20.
In this work, we present the preparation of CuSbS2 thin films of approximately 850 nm in thickness by heating glass/Sb2S3/Cu layers in low vacuum and their application in PV structures: Glass/SnO2:F/n-CdS/p-CuSbS2/C/Ag. The Sb2S3 thin films were chemically deposited from a solution containing SbCl3 and Na2S2O3 at 40 °C on well cleaned substrates. Copper thin films of 50 nm were thermally evaporated on Sb2S3 films of thickness ~600 and 800 nm and the glass/Sb2S3/Cu precursor layers were heated in vacuum at 300 and 350 °C for 1 h. Structural, morphological, optical and electrical characterizations of the annealed thin films were analyzed by X-ray diffraction, Atomic force microscopy, UV–Vis spectrometry and photoresponse measurements. Studies on identification and chemical state of the elements were done using X-ray photoelectron spectroscopy. Photovoltaic devices were prepared using CuSbS2 thin films as absorber and chemical bath deposited CdS thin films as window layer on FTO coated glass substrates. The photovoltaic parameters of the devices were evaluated from the corresponding J–V curves, yielding Jsc, Voc and FF values in the range of 1.03–1.55 mA/cm2, 250–294 mV and 0.46–0.57 respectively, performed using a solar simulator under illumination of AM1.5 radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号