首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The axisymmetrically nonlinear free vibration of a bimetallic shallow shell of revolution under uniformly distributed static temperature changes is investigated. Based on the nonlinear bending theory of thin shallow shells, the governing equations are established in forms similar to those of classical single-layered shells theory by redetermination of reference surface of coordinate. These partial differential equations are reduced to corresponding ordinary ones by elimination of the time variable with Kantorovich averaging method following an assumed harmonic time mode. The resulting equations, which form a nonlinear two-point boundary value problem, are then solved numerically by shooting method, and the temperature-dependent characteristic relations of frequency vs. amplitude are obtained successfully. A detailed parametric study is conducted involving shell geometry and temperature parameters. The effects of these variables on the frequency-amplitude characteristics are plotted and discussed.  相似文献   

2.
Two variants of a refined theory for calculating the stress–strain state in the boundary zones of cylindrical shells are presented. The relevant mathematical models are based on equations of the three-dimensional elasticity theory and the increase over the thickness of the shell in the orders of the polynomials that approximate the sought displacements. The Lagrange variational principle is applied to the value of the shell’s total energy functional defined more exactly with respect to the classical Kirchhoff–Love theory. The formulated boundary problems allow determination with different degrees of accuracy of additional stressed states of the “boundary layer” type. The calculated results obtained in this work are compared with the results obtained according to the classical theory. It has been established that the above stresses make a significant contribution to the total stressed state of the shell and should be considered when designing and testing machine structures for strength and longevity.  相似文献   

3.
Two-dimensional equations of the dynamics of the theory of general shells and appropriate boundary conditions that make it possible to take into account the transverse shear and compression of the shell are constructed based on three-dimensional equations of elasticity theory and the Lagrange variational principle by expanding the displacements in the coordinate normal to the middle surface. Natural oscillations of a circular cylindrical shell are considered. Frequencies of natural oscillations are determined by the Bubnov-Galerkin method. The impact of different types of boundary conditions and geometric parameters of the shell on the value of natural frequencies are analyzed. Simulation results are compared with different variants of the classical theory of shells, as well as with three-dimensional elasticity theory.  相似文献   

4.
基于经典壳体理论和Sanders非线性应变-位移关系,导出了幂律型功能梯度材料(P-FGM)扁球壳在热-机械荷载作用下的几何非线性常微分控制方程。推导过程考虑了沿厚度存在一维热传导温度场和法向均布荷载作用。采用打靶法求解了由控制方程和固定夹紧边界条件构成的两点边值问题。得到了FGM扁球壳的一些典型的屈曲平衡路径和双稳态构形。对热-机械荷载作用的FGM扁球壳的跳跃屈曲行为进行了参数影响分析。结果表明:温度上升时,球壳上临界荷载显著增加、下临界荷载变化不明显。梯度指数增加时,球壳上、下临界荷载均显著减小。组分材料模量增加时,球壳上、下临界荷载均显著增加。当底圆半径和厚度给定时,随壳体中面曲率半径增加,球壳上、下临界荷载均显著增加。当中面曲率半径和厚度给定时,随底圆半径增加,球壳下临界荷载显著减小,上临界荷载几乎不变。  相似文献   

5.
In this paper, an analytical solution is provided for the postbuckling behaviour of moderately thick plates and shallow shells made of functionally graded materials (FGMs) under edge compressive loads and a temperature field. The material properties of the functionally graded shells are assumed to vary continuously through the thickness of the shell, according to a power law distribution of the volume fraction of the constituents. The fundamental equations for moderately thick rectangular shallow shells of FGM are obtained using the von Karman theory for large transverse deflection and high-order shear deformation theory for moderately thick plates. The solution is obtained in terms of mixed Fourier series and the obtained results are compared with those of the Reissner–Mindlin's theory for moderately thick plates and the classical theory ignoring transverse shear deformation. The effect of material properties, boundary conditions and thermomechanical loading on the buckling behaviour and the associated stress field are determined and discussed. The results reveal that thermomechanical coupling effects and the boundary conditions play a major role in dictating the response of the functionally graded plates and shells under the action of edge compressive loads.  相似文献   

6.
A problem relevant to the study of machines and constructions, namely, the formation of a local deflected mode at the point of stress concentration with a forced deformation jump on a contact surface of composite construction elements and machines, is considered. The similarity/dimensional theory is used to analyze the deflection mode in the stress concentration region, i.e. in the neighborhood of an irregular boundary point. It has been shown that, in order to be represented as a power complex, the experimental data (orders of bands) in the neighborhood of an irregular point of the region boundary must, like stresses, possess the property of similarity. The obtained similarity criteria and dependences have been experimentally verified.  相似文献   

7.
The effect of transverse shear and rotary inertias on the dynamic stability of functionally graded cylindrical shells subjected to combined static and periodic axial forces is investigated in this paper. Material properties of functionally graded cylindrical shells are considered temperature-dependent and are graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results for silicon nitride-nickel cylindrical shells are presented based on two different methods: the first-order shear deformation theory (FSDT) which considers the transverse shear strains and the rotary inertias, and the classical shell theory (CST). The results obtained show that the effect of transverse shear and rotary inertias on the dynamic stability of functionally graded cylindrical shells subjected to combined static and periodic axial forces is dependent on the shell’s material composition, environmental temperature, amplitude of static load, deformation mode, and the shell’s geometry parameters.  相似文献   

8.
The problem of designing a cutout in a load bearing structural member in the form of a shell, such that the cut structure maintains its stress state with a minimal departure from the stress state of the uncut structure is addressed herein. Symmetrically laminated composite circular cylindrical shells under hydrostatic compression and axial pressure are considered. Shallow thin shell (Donnell shell theory) lamination theory is utilized. The original (uncut) stiffness of the shell structures is recovered considerably by appropriately designing an edge reinforcement around the cutout. The buckling load of the designed shells are analyzed via the finite element method. An experimental investigation has been carried out to verify some of the results obtained from the finite element analysis. In the work presented, the reinforcement is modeled as a one-dimensional rod/beam type structural element.  相似文献   

9.
This study gives a brief work on vibration characteristics of cylindrical shells submerged in an incompressible fluid. The shell is presumed to be structured from functionally graded material. The effect of the fluid is introduced by using the acoustic wave equation. Love’s first order thin shell theory is utilized in the shell dynamical equations. The problem is framed by combining shell dynamical equations with the acoustic wave equation. Fluid-loaded terms are associated with Hankel function of second kind. Wave propagation approach is employed to solve the shell problem. Some comparisons of numerical results are performed for the natural frequencies of simply supported-simply supported, clamped-clamped and clamped-simply supported boundary conditions of isotropic as well as functionally graded cylindrical shells to check the validity of the present approach. The influence of fluid on the submerged functionally graded cylindrical shells is noticed to be very pronounced.  相似文献   

10.
The resonance sound radiation from submerged infinite elastic cylindrical shell, excited by internal harmonic line force, is investigated. The shell radiation power is presented in terms of resonant modal radiation derived from resonance radiation theory (RRT). The resonance radiation formulae are derived from classical Rayleigh normal mode solution, which are useful for understanding the mechanism of sound radiation from submerged shells. As an example, numerical calculation of a thin steel cylindrical shell is done by using these two methods. It seems that the results of RRT solutions are in good agreement with that of Rayleigh normal mode solutions.  相似文献   

11.
This paper presents the formulation and numerical analysis of circular cylindrical shells by the local adaptive differential quadrature method (LaDQM), which employs both localized interpolating basis functions and exterior grid points for boundary treatments. The governing equations of motion are formulated using the Goldenveizer–Novozhilov shell theory. Appropriate management of exterior grid points is presented to couple the discretized boundary conditions with the governing differential equations instead of using the interior points. The use of compactly supported interpolating basis functions leads to banded and well-conditioned matrices, and thus, enables large-scale computations. The treatment of boundary conditions with exterior grid points avoids spurious eigenvalues. Detailed formulations are presented for the treatment of various shell boundary conditions. Convergence and comparison studies against existing solutions in the literature are carried out to examine the efficiency and reliability of the present approach. It is found that accurate natural frequencies can be obtained by using a small number of grid points with exterior points to accommodate the boundary conditions.  相似文献   

12.
The contact problem of two coaxial cylindrical shells is investigated. A shear deformation theory is used in setting up the governing differential equations. The inner shell is subjected to a constant pressure, and a prescribed initial separation between the inner and outer shells is allowed. Subsequently, the redistribution of tractions and the nature of variation of contact pressure are discussed for different shell parameters and boundary conditions. A possible limitation of the shear deformation theory is discussed.  相似文献   

13.
Vibration of cylindrical shells with ring support   总被引:1,自引:0,他引:1  
In this paper, a study on the vibration of thin cylindrical shells with ring supports is presented. The cylindrical shells have ring supports which are arbitrarily placed along the shell and which imposed a zero lateral deflection. The study is carried out using Sanders' shell theory. The governing equations are obtained using an energy functional with the Ritz method. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.  相似文献   

14.
Effects of shear non-linearity on free vibration of a laminated composite shell of revolution are investigated using a semi-analytical method based on the Reissner–Mindlin shell theory. The coupling between symmetric and anti-symmetric vibration modes of the shell is considered in the shear deformable shell element employed in this study. The Hahn–Tsai non-linearly elastic shear stress–shear strain relation is adopted. Numerical examples are given for laminated composite circular cylindrical and conical shells with various boundary conditions. The numerical results indicate that shear non-linearity may reduce significantly the fundamental frequencies of cross-ply composite shells of revolution.  相似文献   

15.
In order to study the free vibration of simply supported circular cylindrical shells, an exact analytical procedure is developed and discussed in detail. Part I presents a general approach for exact analysis of natural frequencies and mode shapes of circular cylindrical shells. The validity of the exact technique is verified using four different shell theories 1) Soedel, 2) Flugge, 3) Morley-Koiter and 4) Donnell. The exact procedure is compared favorably with experimental results and those obtained using a numerical finite element method. A literature review reveals that beam functions are used extensively as an approximation for simply supported boundary conditions. The accuracy of the resonance frequencies obtained using the approximate method are also investigated by comparing results with those of the exact analysis. Part II presents effects of different parameters on mode shapes and natural frequencies of circular cylindrical shells.  相似文献   

16.
A postbuckling analysis is presented for a cross-ply laminated cylindrical shell with piezoelectric actuators subjected to the combined action of mechanical, electric and thermal loads. The temperature field considered is assumed to be a uniform distribution over the shell surface and through the shell thickness and the electric field is assumed to be the transverse component Ez only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classical shell theory with a von Kármán–Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of hybrid laminated cylindrical shells. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin shells with fully covered or embedded piezoelectric actuators subjected to combined mechanical loading of external pressure and axial compression, and under different sets of thermal and electric loading conditions. The effects played by temperature rise, applied voltage, shell geometric parameter, stacking sequence, as well as initial geometric imperfections are studied.  相似文献   

17.
The effect of the methods of fixing and external-pressure loading of an elastic isotropic cylindrical shell on its sub- and supercritical deformation is investigated. A geometrically nonlinear statement of the edge problem in the form of the technical theory of finite deflection hollow shells is applied. The edge problem is digitized with the Rayleigh-Ritz method. The solution to the set of nonlinear algebraic equations is sought using the methods of continuation by the parameter close to the optimal one. The versions of shell sealing and supporting as well as uniform lateral pressure and uniform compression are considered. The trajectories of shell loading are plotted and the shapes of their supercritical equilibrium states are found. The axial compressing load is found to exert a larger effect on the upper and lower critical pressure as compared to the conditions of shell end fixing. Moreover, axial loading of short shells yields an increase in the critical pressure rather than its decrease, as is customary in the theory of shell stability.  相似文献   

18.
The Vectorial-wave method (VWM) is developed to study free and forced vibrations of cylindrical shells in the presence of dampers at supports. In modeling the issue, a circular cylindrical shell is considered with two ended supports, including separate springs and viscous dampers in the possible directions. Accordingly, based on Flügge thin shell theory and by considering the wave vectors going in the opposite direction along with the shell axis, reflection and transmission matrices are determined to satisfy the shell continuity as well as the boundary conditions. The proposed method is verified through comparing its results with the available literature and the numerical results calculated by Finite element method (FEM). Employing VWM, the viscous characteristics of the applied supports on natural frequencies of the shell are investigated. Furthermore, frequency responses of the shell, which are affected by point-load excitation, are obtained. Finally, the results show that several tandem resonance picks can be eliminated via accurate setting of the support damping.  相似文献   

19.
The static response and free vibration of metal and ceramic functionally graded shells are analyzed using the element-free kp-Ritz method. The material properties are assumed to vary continuously along the depth direction. The displacement field is expressed in terms of a set of mesh-free kernel particle functions according to Sander's first-order shear deformation shell theory. The effects of the volume fraction, material property, boundary condition, and length-to-thickness ratio on the shell deflection, axial stress, and natural frequency are examined in detail. Convergence studies of node numbers are performed to verify the effectiveness of the proposed method. Comparisons reveal that the numerical results obtained from the proposed method agree well with those from the classical and finite element methods.  相似文献   

20.
Free vibrations of cantilevered circular cylindrical shells having rectangular plan-forms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号