共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Chakraborty 《Computational Mechanics》2009,43(6):755-767
The exact solution of the governing partial differential equations describing the motion of an anisotropic porous beam with axial-flexural coupling is presented. The motion of the beam is described by the classical Euler–Bernoulli theory. The pore-fluid pressure is governed by the generalized Darcy’s law with relaxation and retardation time parameters to account for the inertia and viscosity of the fluid. Solutions are sought in the frequency domain where the governing equations are converted into a polynomial eigenvalue structure and solved exactly. The wavenumbers and group speeds of propagating waves in the beam are studied in detail. It is found that the presence of fluid-filled porous micro-structure introduces three additional propagating modes, other than the axial and bending modes predicted by the classical beam theory. The effect of diffusion boundary conditions on the transverse motion of a porous beam is investigated in detail. It is also found that the material parameters have considerable influence on the magnitude of the transverse velocity, the group speed of propagation and the behavior of the pressure resultants. 相似文献
2.
The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide extremely accurate solutions, while reducing the total number of degrees-of-freedom to resolve the computational and cost problems. Thus, in this paper, the spectral element model is developed for an axially loaded bending–shear–torsion coupled composite laminated beam which is represented by the Timoshenko beam model based on the first-order shear deformation theory. The high accuracy of the spectral element model is then numerically verified by comparing with exact theoretical solutions or the solutions obtained by conventional finite element method. For the numerical verification, the finite element model is also provided for the composite laminated beam. 相似文献
3.
《Composites Part B》2013,45(1):604-612
This paper presents experimental research on reinforced concrete (RC) beams with external flexural and flexural–shear strengthening by fibre reinforced polymer (FRP) sheets consisting of carbon FRP (CFRP) and glass FRP (GFRP). The work carried out has examined both the flexural and flexural–shear strengthening capacities of retrofitted RC beams and has indicated how different strengthening arrangements of CFRP and GFRP sheets affect behaviour of the RC beams strengthened. Research output shows that the flexural–shear strengthening arrangement is much more effective than the flexural one in enhancing the stiffness, the ultimate strength and hardening behaviour of the RC beam. In addition theoretical calculations are developed to estimate the bending and shear capacities of the beams tested, which are compared with the corresponding experimental results. 相似文献
4.
5.
In this work, a new boundary element formulation for the analysis of plate–beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate–beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate–beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. 相似文献
6.
《Composites Science and Technology》2003,63(13):1985-2002
The success with which dimensional control during processing of composite structures can be modelled depends on the level of understanding of the underlying mechanisms that drive the accumulation of residual stresses in the part. Tool–part shear interaction during processing can cause substantial warpage in initially flat laminates, yet this phenomenon remains poorly understood. This paper presents an experimental technique in which a thin tool, instrumented with strain gauges, is used for characterizing the interfacial shear stresses that arise between the tool and part during processing. The results show that a sliding interface condition occurs during the majority of the cure cycle, although, at times the tool and part adhere together resulting in high interfacial shear stresses. This tool–part interaction occurs despite the use of a release agent, though the use of a fluoroethylenepropylene (FEP) release film at the tool–part interface reduces the effect. 相似文献
7.
《Materials Science & Technology》2013,29(10):1234-1237
AbstractSurface alloying of aluminium with nickel was carried out using a pulsed Nd–YAG laser. The effect of beam interaction time on laser alloying of aluminium with pulsed Nd–YAG laser has been studied. It was found that the beam interaction time of a pulsed laser has a significant effect on microstructure and properties of alloyed layers. The results indicated that with changes in the beam diameter, higher thickness of alloyed layer and higher microhardness are both obtained at a lower effective interaction time. When travel speed changes, the same conditions are obtained at a higher effective interaction time. 相似文献
8.
Yan-Ping Lian Yan Liu Xiong Zhang 《International Journal of Mechanics and Materials in Design》2014,10(2):199-211
This paper proposes a coupled particle–finite element method for fluid–membrane structure interaction problems. The material point method (MPM) is employed to model the fluid flow and the membrane element is used to model the membrane structure. The interaction between the fluid and the membrane structure is handled by a contact method, which is implemented on an Eulerian background grid. Several numerical examples, including membrane sphere interaction, water sphere impact and gas expansion problems, are studied to validate the proposed method. The numerical results show that the proposed method offers advantages of both MPM and finite element method, and it can be used to simulate fluid–membrane interaction problems. 相似文献
9.
10.
Benedikt Schott Christoph Ager Wolfgang A. Wall 《International journal for numerical methods in engineering》2019,119(8):757-796
Cut finite element method–based approaches toward challenging fluid-structure interaction (FSI) are proposed. The different considered methods combine the advantages of competing novel Eulerian (fixed grid) and established arbitrary Lagrangian-Eulerian (moving mesh) finite element formulations for the fluid. The objective is to highlight the benefit of using cut finite element techniques for moving-domain problems and to demonstrate their high potential with regard to simplified mesh generation, treatment of large structural motions in surrounding flows, capturing boundary layers, their ability to deal with topological changes in the fluid phase, and their general straightforward extensibility to other coupled multiphysics problems. In addition to a pure fixed-grid FSI method, advanced fluid-domain decomposition techniques are also considered, leading to highly flexible discretization methods for the FSI problem. All stabilized formulations include Nitsche-based weak coupling of the phases supported by the ghost penalty technique for the flow field. For the resulting systems, monolithic solution strategies are presented. Various two- and three-dimensional FSI cases of different complexity levels validate the methods and demonstrate their capabilities and limitations in different situations. 相似文献
11.
A monolithic numerical solution of a partial differential equation (PDE) model for shear bands, which includes a thermal softening rate dependent plastic flow rule and finite thermal conductivity, is presented. The formulation accounts for large deformation kinematics and includes incrementally objective treatment of the hypoplastic constitutive relations. Regularization is achieved by including finite thermal conductivity, which informs the PDE system of a length scale, governed by competition between shear heating and thermal diffusion. The monolithic solution scheme is then used to eliminate splitting errors during the solution of the discretized system. The scheme is presented in a general, mixed formulation, which allows for many choices of shape functions. We study and compare two elements, which have been implemented with the monolithic nonlinear solver: the Irreducible Shear Band Quad (ISBQ) and the Pian Sumihara Shear Band Quad (PSSBQ). ISBQ employs the same interpolation as an irreducible four node quad while PSSBQ is a mixed, assumed stress element. The algorithmic approximations to the Lie derivative and Jaumann rate of Kirchhoff stress are available in the literature for ISBQ type elements, and are derived in this paper for the PSSBQ. These expressions are used to achieve an incrementally objective formulation. It is found that the PSSBQ converges faster than the ISBQ with mesh refinement, and that the convergence of the ISBQ can be improved with a remeshing procedure. 相似文献
12.
H. Nguyen-Xuan T. Rabczuk N. Nguyen-Thanh T. Nguyen-Thoi S. Bordas 《Computational Mechanics》2010,46(5):679-701
In this paper, a node-based smoothed finite element method (NS-FEM) using 3-node triangular elements is formulated for static, free vibration and buckling analyses of Reissner–Mindlin plates. The discrete weak form of the NS-FEM is obtained based on the strain smoothing technique over smoothing domains associated with the nodes of the elements. The discrete shear gap (DSG) method together with a stabilization technique is incorporated into the NS-FEM to eliminate transverse shear locking and to maintain stability of the present formulation. A so-called node-based smoothed stabilized discrete shear gap method (NS-DSG) is then proposed. Several numerical examples are used to illustrate the accuracy and effectiveness of the present method. 相似文献
13.
The present work studies the interfacial fracture in a piezoelectric cylindrical shell patch. The problem is solved by the methods of infinite trigonometric series and Cauchy singular integral equation, and the numerical results of the stress intensity factor (SIF) are obtained. The effects of the interfacial radius and crack’s location on the SIF are explained through the effects of the free surface, interfacial curvature, crack length, and interface end, respectively. An optimal stiffness matching relationship between the piezoelectric layer and dielectric substrate is suggested. The effects of the piezoelectric and dielectric coefficients are explained through the mechanism of piezoelectric stiffening. 相似文献
14.
In this paper we describe the dynamic behavior of elongated multi-structured media excited by flexural harmonic waves. We examine periodic structures consisting of continuous beams and discrete resonators disposed in various arrangements. The transfer matrix approach and Bloch–Floquet conditions are implemented for the determination of different propagation and non-propagation regimes. The effects of the disposition of the elements in the unit cell and of the contrast in the physical properties of the different phases have been analyzed in detail, using representations in different spaces and selecting a proper set of non-dimensional parameters that fully characterize the structure. Coupling in series and in parallel continuous beam elements and discrete resonators, we have proposed a class of micro-structured mechanical systems capable to control wave propagation within elastic structures. 相似文献
15.
A 2D mass-redistributed finite element method (MR-FEM) for pure acoustic problems was recently proposed to reduce the dispersion error. In this paper, the 3D MR-FEM is further developed to solve more complicated structural–acoustic interaction problems. The smoothed Galerkin weak form is adopted to formulate the discretized equations for the structure, and MR-FEM is applied in acoustic domain. The global equations of structural–acoustic interaction problems are then established by coupling the MR-FEM for the acoustic domain and the edge-based smoothed finite element method for the structure. The perfect balance between the mass matrix and stiffness matrix is able to improve the accuracy of the acoustic domain significantly. The gradient smoothing technique used in the structural domain can provide a proper softening effect to the “overly-stiff” FEM model. A number of numerical examples have demonstrated the effectiveness of the mass-redistributed method with smoothed strain. 相似文献
16.
17.
Kenji Takizawa Creighton Moorman Samuel Wright Jason Christopher Tayfun E. Tezduyar 《Computational Mechanics》2010,46(1):31-41
The stabilized space–time fluid–structure interaction (SSTFSI) technique was applied to arterial FSI problems soon after its development by the Team for Advanced Flow Simulation and Modeling. The SSTFSI technique is based on the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation and is supplemented with a number of special techniques developed for arterial FSI. The special techniques developed in the recent past include a recipe for pre-FSI computations that improve the convergence of the FSI computations, using an estimated zero-pressure arterial geometry, Sequentially Coupled Arterial FSI technique, using layers of refined fluid mechanics mesh near the arterial walls, and a special mapping technique for specifying the velocity profile at inflow boundaries with non-circular shape. In this paper we introduce some additional special techniques, related to the projection of fluid–structure interface stresses, calculation of the wall shear stress (WSS), and calculation of the oscillatory shear index. In the test computations reported here, we focus on WSS calculations in FSI modeling of a patient-specific middle cerebral artery segment with aneurysm. Two different structural mechanics meshes and three different fluid mechanics meshes are tested to investigate the influence of mesh refinement on the WSS calculations. 相似文献
18.
Fiber–metal laminates (FMLs) are advanced composite materials that consist of bonded thin metal sheets and fiber-reinforced composite layers. In this article, mechanical behavior of a thermoplastic-based FML is investigated, which is composed of glass-fiber-reinforced polypropylene (GFRP) laminate and aluminum AA1200-O as the core and skin layers, respectively. Engineering constants of the composite laminate were achieved using Timoshenko's beam theory, flexural and tensile test results. Finite element simulations of the GFRP-based FML were performed to predict the behavior of this material in three-point bending and deep drawing tests. Some experimental verification tests were conducted to prove the reliability of results in the FE analysis of the FML. Comparison of the results shows an excellent correlation between the FE analysis and experimental tests. 相似文献
19.
K. Wisniewski E. Turska 《International journal for numerical methods in engineering》2012,90(4):506-536
In this paper, enhanced four-node shell elements with six DOFs/node based on the Hu–Washizu (HW) functional are developed for Green strain. The drilling rotation is included through the drilling rotation constraint equation. The key features of the approach are as follows.
- The shell HW functional is derived from the shell potential energy functional, which is an alternative to the derivation from the three-dimensional HW functional. This method is more versatile as it enables the derivation of the so-called partial HW functionals, with different treatment of the bending/twisting part and the transverse shear part of strain energy.
- For the membrane part of HW shell elements, a seven-parameter stress, a nine-parameter strain and a two-parameter enhanced assumed displacement gradient enhancement are selected as optimal. The assumed representations of stress and strain are defined in skew coordinates in the natural basis at the element's center. This improves accuracy and has positive theoretical consequences.
- The drilling rotation constraint equation is treated by the perturbed Lagrange method. The faulty term resulting from the equal-order approximations of displacements and the drilling rotation is eliminated, and one spurious mode is stabilized using the gamma method. The proposed formulation is insensitive to the element's distortions and yields a large radius of convergence in the examples involving in-plane bending.
20.
Elishakoff Isaac Amato Marco 《International Journal of Mechanics and Materials in Design》2021,17(4):783-799
International Journal of Mechanics and Materials in Design - This paper deals with flutter due to gas flow of a uniform and homogeneous beam with shear deformation and rotary inertia effects taken... 相似文献