首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Design of a Ka Band 35 kW CW Low-Voltage Harmonic Gyrotron   总被引:1,自引:0,他引:1  
In this paper, a continuous wave (CW) low-voltage second harmonic gyrotron with the conventional cavity has been preliminarily designed and evaluated with self-consistent nonlinear simulation code and the particle-in-cell code CHIPIC. The simulation results of the two codes are shown to be in agreement basically. The 35 kW CW output power of the designed harmonic gyrotron driven by a 25 kV 5.0A electron beam from a magnetron injection gun (MIG) is obtained. The maximum output power and the electronic efficiency of the gyrotron is about 35 kW and 30% respectively.  相似文献   

2.
A 40 A double-anode magnetron injection gun for a 1 MW, 110 GHz gyrotron has been designed. The preliminary design has been obtained by using some trade-off equations. The electron beam analysis has been performed by using the commercially available code EGUN and the in-house developed code MIGANS. The operating mode of the gyrotron is TE22,6 and it is operated in the fundamental harmonic. The electron beam with a low transverse velocity spread (db ^max = 2.26% \delta {\beta_{ \bot \max }} = 2.26\% ) and the transverse-to-axial velocity ratio of the electron beam (α) = 1.37 is obtained. The simulated results of the MIG obtained with the EGUN code have been validated with another trajectory code TRAK. The results on the design output parameters obtained by both the codes are in good agreement. The sensitivity analysis has been carried out by changing the different gun parameters to decide the fabrication tolerance.  相似文献   

3.
A triode type magnetron injection gun (MIG) of a 42 GHz, 200 kW gyrotron for an Indian TOKAMAK system is designed by using the commercially available code EGUN. The operating voltages of the modulating anode and the accelerating anode are 29 kV and 65 kV respectively. The operating mode of the gyrotron is TE03 and it is operated in fundamental harmonic. The simulated results of MIG obtained with the EGUN code are validated with another trajectory code TRAK.  相似文献   

4.
研究了影响毫米波谐波回旋管互作用效率的多个因素,通过采用三次谐波工作,94 GHz回旋管的工作磁场降低到了1.185 T,使采用永磁体取代超导磁体成为可能.利用自洽非线性计算和粒子模拟研究了回旋振荡管的注-波互作用过程,发现了腔体品质因数与互作用效率的内在联系,研究了工作电压和电子注横纵速率比对耦合强度的影响,考虑了磁场渐变及电子注速度离散对互作用效率的影响,通过选择合理的工作模式和系统参数,当工作电压为40 kV、工作电流为12 A、电子注横向速度离散为3%时获得了95 kW的输出功率及19.7%的效率.当采用单级降压收集极后,效率可以进一步提高到39.2%.  相似文献   

5.
The design and experimental results of a W-band gyrotron operating at the third cyclotron harmonic are presented. The gyrotron is designed to operate at the TE61 mode, which is significantly distinct from competing modes. An iris cavity is employed for the purpose of trapping the third harmonic mode more effectively and lowering its start current. In the experiment, the gyrotron is drived by a triode magnetron injection gun (MIG) which can produce a 45 kV, 3 A electron beam. When maximum axial magnetic field is 1.22 T, a single mode third harmonic gyrotron radiation is observed with the frequency of 94.86 GHz. The maximum output power is 5.5 kW, corresponding to an efficiency of 4%. Another third harmonic mode TE02 is also detected at 88.8 GHz, with maximum output power of 1.5 kW.  相似文献   

6.
Development of gyrotrons with an internal mode convertor has started in Research Center for Development of Far-Infrared Region, University of Fukui (FIR FU). As the first gyrotron of such a kind, we have designed and manufactured Gyrotron FU CW GI. It operates at 203 GHz at fundamental cyclotron resonance. We have designed a cavity and a mode convertor under some constraints such as reuse of an electron gun and small diameter of a magnet bore. Designed output power is about 1 kW. We have succeeded in observation of a circular radiation pattern. The maximum observed output power is 0.5 kW for the setting cathode voltage of 20 kV and the beam current of 0.5 A. This success makes gyrotron development in FIR FU to proceed to a new stage.  相似文献   

7.
A high-power W-band gyrotron has been designed and performance tested in Korea, with an output power in the range of tens of kilowatts. The gyrotron consists of a diode-type electron gun operating at 40 kV, a TE6,2 mode interaction cavity, and a mode converter for producing a highly Gaussian output mode beam. Presented here are the detailed component design procedure and the experimental results of the gyrotron’s performance evaluation. A maximum power of 62 kW was achieved with an efficiency of 22 %, and a highly Gaussian output beam was observed. The gyrotron’s output beam is analyzed, and its transmission through an oversized waveguide is discussed. This gyrotron is the first gyrotron developed in Korea with high power greater than 10 kW and high frequency greater than 90 GHz.  相似文献   

8.
In this paper, a synthesized design of the magnetron injection gun (MIG) for a 200 kW, 42 GHz gyrotron is presented. The synthesis steps involve the selection of the type of the MIG, the development of the design criteria, the selection of initial design parameters and the development of a program for the estimation of the synthesized parameters for the MIG design. The presented approach estimates the cathode, the beam and the anode parameters, enabling one to build a synthesis model of a complete MIG system.  相似文献   

9.
A beam tunnel for a 42 GHz, 200 kW gyrotron for an Indian TOKAMAK system has been designed. The initial design of the beam tunnel has been carried out on the basis of the required electron beam parameters at the interaction cavity and the electron beam simulation of the magnetron injection gun. The design optimization of the beam tunnel has been done with the help of 3-D simulation software CST-Microwave Studio. In the simulation, the absorption, the reflection and the transmission of RF power by the beam tunnel have been analyzed. Three different lossy ceramics, Al2O3–SiC, AlN–SiC and BeO–SiC have been investigated during the simulation. The simulation results obtained with CST-Microwave Studio have been validated with another 3-D simulation software HFSS. The Q value of the beam tunnel for different ceramic material has also been analyzed to investigate the parasitic mode excitation in the beam tunnel.  相似文献   

10.
We report the experimental operation of a voltage tunable gyrotron backward wave oscillator (gyro-BWO) in the frequency range near 140 GHz. Voltage tunability is an important feature of the gyro-BWO for application as a fast tuning source for driving high power free electron lasers or cyclotron autoresonance maser amplifiers. The gyro-BWO operated in an overmoded cylindrical waveguide structure in the TE1,2 mode. The electron beam source was a Pierce-wiggler gun producing an 80 kV, 6.2 A beam. Frequency tuning with voltage between 134 and 147 GHz was achieved in the TE1,2 mode with constant magnetic field. However, this tuning was found to be discontinuous. Output powers of up to 2 kW and 2% efficiency were found, significantly below theoretical predictions for a cold beam. The theoretical beam velocity spread was modeled by a 3D beam transport code. The code results show that space charge forces, coupled with the wiggler-induced helical motion and the short cyclotron wavelength of the beam, produce large increases in velocity spread in the magnetic compression region. A beam with smaller velocity spread would be needed to make the gyro-BWO operate at the desired efficiency.  相似文献   

11.
The paper describes briefly the effect of electron velocity spread on the principal operating parameters of a gyrotron. A method of reducing velocity spread is discussed, and a new method of measuring electron velocity spread in a cycloiding electron beam is presented. By use of a high precision radial-gauge and multilobe collector, the distribution of the beam transverse velocity of a gyrotron is accurately measured. Compared with other methods conventionally used in this country and abroad such as those using retarding-field, pin-hole collector, this method is characterized by the fact that the space charge effect would not modify the experimental results, and the beam velocity spread of a gyrotron under real operating conditions can be measured. In order to characterize the beam in an overall manner, a new concept of relative density velocity spread is introduced in this paper. The experimental work has been performed on a special electron beam analyser with advanced design.  相似文献   

12.
This study proposes a Ka-band harmonic-doubling gyrotron traveling-wave amplifier (gyro- TWT), using distributed wall losses in the input stage and mode-selective interaction circuit in the output stage, to improve the stability of the amplification. Based on a large signal simulation code, a saturated peak power of 163 kW with an efficiency of 15.5%, a gain of 31.1 dB, and a 3 dB bandwidth of 0.9 GHz is predicted for the gyro-TWT driven by 70 kV, 15 A electron beam with a velocity ratio of 1.2 and velocity spread 5% at 33.2 GHz.  相似文献   

13.
介绍了220 GHz同轴腔回旋管的设计,工作模式为TE04圆电模式.采用自洽非线性理论对谐振腔的工作参数进行了参数优化,选取工作电压50 k V,工作电流10 A,工作磁场8.4 Tesla.设计的同轴型双阳极磁控注入式电子枪,电子注速度横纵比1.5,速度零散5.2%.并采用粒子模拟方法进行了整管仿真.理论计算与粒子模拟结果表明,设计的220 GHz同轴腔回旋管有望获得200 k W以上的输出功率与40%以上的互作用效率.  相似文献   

14.
A development of 170GHz/500kW level gyrotron was carried out as R&D work of ITER. The oscillation mode is TE31,8. In a short pulse experiment, the maximum power of 750kW was achieved at 85kV/40A. The efficiency was 22%. In the depressed collector operation, 500kW/36%/50ms was obtained. The maximum efficiency of 40% was obtained at PRF=470kW whereas the power decrease by the electron trapping was observed. Pulse extension was done up to 10s at PRF=170kW with the depressed collector operation. The power was limited by the temperature increase of the output window.  相似文献   

15.
张天钟  喻胜  张颜颜  牛新建  李宏福 《电子学报》2015,43(12):2360-2367
准光模式变换器是大功率输出回旋管的关键部件.采用高转换效率的准光模式变换器可以横向输出电磁波,增大收集极的尺寸,提高回旋管的输出功率,提高整管效率.该文设计的回旋管内置准光模式变换器由Denisov辐射器天线和四个反射镜组成,输入频率为94GHz,模式为TE6,2模.采用耦合波理论分析和优化了Denisov辐射器内的场分布,并根据矢量绕射理论编制数值模拟程序计算了各个反射镜上的场分布,其输出功率转换效率达97.2%.利用三维全波仿真软件feko6.0进行对比分析,最后加工所设计的结构并内置于回旋振荡管进行热测实验,结果表明其输出场分布与理论计算结果基本一致.  相似文献   

16.
The conceptual design of a 35 GHz gyrotron has been developed consistently with the complex formulation of the electric field longitudinal distribution in the resonant cavity. Some models of magnetron injection guns able to produce laminar beams have been investigated leading to the design of an electron gun capable of generating a current of 5 A with a perpendicular velocity dispersion of 0.5%. The device includes three magnetic systems producting flat axial magnetic induction profiles of 1.05 kG, 13.2 kG and 0.65 kG in the cathode, cavity and collector regions, respectively. The gyrotron has been designed for pulsed operation in the TE021 mode. Under the soft self-excitation condition, the maximum attainable efficiency is 40% with an output power of 100 kW. An analysis of the collector thermal behaviour has been carried out as well as a study of the thermophysical properties of the alumina window to be used.  相似文献   

17.
This paper presents a novel design code for double anode magnetron injection guns (MIGs) in gyro-devices based on boundary element method (BEM). The physical and mathematical models were constructed, and then the code using BEM for MIG’s calculation was developed. Using the code, a double anode MIG for a Q-band gyrotron traveling-wave tube (gyro-TWT) amplifier operating in the circular TE01 mode at the fundamental cyclotron harmonic was designed. In order to verify the reliability of this code, velocity spread and guiding center radius of the MIG simulated by the BEM code were compared with these from the commonly used EGUN code, showing a reasonable agreement. Then, a Q-band gyro-TWT was fabricated and tested. The testing results show that the device has achieved an average power of 5kW and peak power ≥?150 kW at a 3% duty cycle within bandwidth of 2 GHz, and maximum output peak power of 220 kW, with a corresponding saturated gain of 50.9 dB and efficiency of 39.8%. This paper demonstrates that the BEM code can be used as an effective approach for analysis of electron optics system in gyro-devices.  相似文献   

18.
A linear theory for a gyrotron backward-wave oscillator (gyro-BWO) is developed. The theory solves a reduced one-dimensional Maxwell-Vlasov equation in the form of a linear integro-differential equation using the Laplace transformation. The relative amplitudes among the waveguide modes and beam modes are completely determined and enable one to calculate gyro-BWO start-oscillation conditions. Using this analysis and including velocity spread effects, a design of a millimetre-wave gyro-BWO has been carried out based on the operating parameters of an existing electron gun. Tunability over a range of 86 GHz to 103 GHz is predicted with output power estimated to be ~ 1 kW.  相似文献   

19.
This paper investigates the possibility of using Silicon Nitride Composite (Kyocera SN-287) as single-disc, edge-cooled window for gyrotrons operating below 200 kW CW in the frequency range 28-42 GHz. Rotationally symmetric TE0n, and TEM00 Gaussian modes of rf transmission through the window have been considered. Analysis performed using a one dimensional (1D) finite difference (FD) code reveals that thermal stresses developed due to non-uniform temperature distribution on the disc surface are well within manageable limits for a 200 kW 42 GHz gyrotron proposed for some ECRH applications. For industrial gyrotrons, for microwave material processing and operating at a maximum power level of 100 kW CW, Si3N4 windows may be a cost effective replacement for sapphire windows. It is found that a TE02 profile results in lower peak temperature at the window disc in comparison to a Gaussian beam profile and allows the use of smaller discs.  相似文献   

20.
The gyrotron with an electrically insulated collector has been manufactured and tested. The 60% output efficiency is obtained for the Collector Potential Depression (CPD) operation regime. The results of the numerical simulation of the electron energy spectrum in the collector region of the second-harmonic technological 24 GHz gyrotron are presented. It is shown, that the minimal electron beam energy is about 20% of the initial value and that the gyrotron cavity should be expanded to achieve the highest output efficiency of the gyrotron with energy recovery. The highest experimental decelerating voltage is in good agreement with the calculation of the electron energy spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号