首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Municipal landfill leachate, especially mature leachate, may disrupt the performance of moderately-sized municipal activated sludge wastewater treatment plants, and likewise tend to be recalcitrant to biological pretreatment. Recently, Fenton methods have been investigated for chemical treatment or pre-treatment of mature leachate. In this paper, the results of laboratory tests to determine the roles of oxidation and coagulation in reducing the organic content of mature leachate during Fenton treatment are presented. The efficiencies of chemical oxygen demand (COD) oxidation and coagulation were tested, and the ratio of COD removal by oxidation to that by coagulation was assessed, under various operating conditions. Low initial pH, appropriate relative and absolute Fenton reagent dosages, aeration, and stepwise addition of reagents increased COD removal by oxidation and the importance of oxidation relative to coagulation. Simultaneous aeration and stepwise reagent addition allowed comparable treatment without initial acidification pH, due to the generation of acidic organic intermediates and the continuous input of CO2. On the other hand, high COD oxidation efficiency and low ferrous dosage inhibited COD removal by coagulation. At significantly high oxidation efficiency, overall COD reduction decrease slightly due to low coagulation efficiency. Under the most favorable conditions (initial pH 3, molar ratio [H(2)O(2)]/[Fe2+]=3, [H2O2]=240 mM, and six dosing steps), 61% of the initial COD was removed, and the ratio of COD removal oxidation to coagulation was 0.75. Results highlighted the synergistic roles of oxidation and coagulation in Fenton treatment of mature leachate, and the role of oxidation in controlling the efficiency of removal of COD by coagulation.  相似文献   

2.
Optimization of Fenton process for the treatment of landfill leachate   总被引:18,自引:0,他引:18  
The treatment of landfill leachate by Fenton process was carried out in a batch reactor. The effect of operating conditions such as reaction time, pH, H2O2 to Fe(II) molar ratio, Fenton's reagent dosage, initial COD strength, feeding mode, the type of polymer, and temperature on the efficacy of Fenton process was investigated. It is demonstrated that Fenton's reagent can effectively degrade leachate organics. Fenton process was so fast that it was complete in 30 min. The oxidation of organic materials in the leachate was pH dependent and the optimal pH was 2.5. The favorable H2O2 to Fe(II) molar ratio was 1.5, and organic removal increased as dosage increased at the favorable H2O2 to Fe(II) molar ratio. The efficacy of Fenton process was improved by adding Fenton's reagent in multiple steps than that in a single step. Furthermore, the stepwise addition of both hydrogen peroxide and ferrous iron was more effective than that of hydrogen peroxide only. Sludge settling characteristics were much improved with the addition of the proper polymer. Temperature gave a positive effect on organic removal.  相似文献   

3.
The treatment of landfill leachate by Fenton process was carried out in a continuous stirred tank reactor (CSTR). The effect of operating conditions such as reaction time, hydraulic retention time, pH, H(2)O(2) to Fe(II) molar ratio, Fenton's reagent dosage, initial COD strength, and temperature on the efficacy of Fenton process was investigated. It is demonstrated that Fenton's reagent can effectively degrade leachate organics. Fenton process reached the steady state after three times of hydraulic retention. The oxidation of organic materials in the leachate was pH dependent and the optimal pH was 2.5. The favorable H(2)O(2) to Fe(II) molar ratio was 3, and organic removal increased as dosage increased at the favorable H(2)O(2) to Fe(II) molar ratio. Temperature gave a positive effect on organic removal.  相似文献   

4.
The effectiveness of the Fenton's reagent (H(2)O(2)/Fe(2+)) in the treatment of carpet dyeing wastewater was investigated under different operational conditions, namely, H(2)O(2) and FeSO(4) concentrations, initial pH and temperature. Up to 95% COD removal efficiency was attained using 5.5 g/l FeSO(4) and 385 g/l H(2)O(2) at a pH of 3, temperature of 50 degrees C. The H(2)O(2)/Fe(2+) ratio (g/g) was found to be between 95 and 290 for maximum COD removal. It was noteworthy that, keeping H(2)O(2)/Fe(2+) ratio constant within the range of 95-290, it became possible to decrease FeSO(4) concentration to 1.1 g/l and H(2)O(2) concentration to 96.3 g/l, still achieving nearly the same COD removal efficiency. The relative efficiencies of Fenton's oxidation and coagulation stages revealed that Fenton's coagulation removed organic compounds which were not removed by Fenton's oxidation, indicating that the Fenton's coagulation acted as a polishing step.  相似文献   

5.
Advanced oxidation processes (AOPs), namely photo-Fenton, Fenton-like, Fenton and UV/H(2)O(2), have been investigated in the removal of organic matter and colour from landfill leachates. The leachate was characterised by high COD, low biodegradability and intense dark colour. Evaluation of COD removal as a function of the operation variables (H(2)O(2), Fe(2+), Cu(2+), UV) led to results that ranged between 30% and 77% and it was observed that the removal efficiencies decreased in the order: photo-Fenton>Fenton-like>Fenton>UV/H(2)O(2)>UV. Thus, a detailed experimental analysis was carried out to analyse the effect of the hydrogen peroxide and iron concentrations and the number of reagent additions in the photo-Fenton process, observing that: (i) the COD removal ranged from 49% to 78% depending on the H(2)O(2) dose, (ii) the total amount of organic matter removed was increased by adding the reagent in multiple steps (86%), (iii) iron concentration corresponding to a Fe(2+)/COD mass ratio=0.33 was found to be the most favourable and, (iv) after a neutralization step, the colour and residual concentrations of iron and H(2)O(2) were practically negligible in the final leachate solution.  相似文献   

6.
Fenton process was employed to treat synthetic dye wastewater with supply of Fe(II) electrolytically generated from iron-containing sludge which was recycled and reused throughout the study. Treated water quality and properties of iron sludge after being repeatedly used were reported and discussed. Experimental results showed that COD was mainly removed by oxidation other than coagulation. Although, the process was quite effective for COD and color removal, conductivity of treated water was enormously high. Meanwhile, repeated use of iron-containing sludge results in accumulation of organic materials embedded in the sludge as indicated by increasing volatile suspended solid (VSS)/TSS ratio and decreasing zeta potential.  相似文献   

7.
Emission of volatile organic compounds (VOCs) produced during composting of different organic wastes (source-selected organic fraction of municipal solid wastes (OFMSW), raw sludge (RS) and anaerobically digested wastewater sludge (ADS) and animal by-products (AP)) and its subsequent biofiltration have been studied. Composting was performed in a laboratory scale composting plant (30l) and the exhaust gases generated were treated by means of a compost biofilter. VOCs concentration in the composting exhaust gases for each composting process ranged from 50 to 695 mg C m-3 for OFMSW (5:1), from 13 to 190 mg C m-3 for OFMSW (1:1), from 200 to 965 mg C m-3 for RS, from 43 to 2900 mg C m-3 for ADS and from 50 to 465 mg C m-3 for AP. VOCs emissions were higher during the beginning of the composting process and were not generally related to the biological activity of the process. These emissions corresponded to an average loading rate applied to the biofilter from 2.56 to 29.7 g C m-3 biofilter h-1. VOCs concentration in the exhaust gas from the biofilter ranged from 55 to 295 mg C m-3 for OFMSW (5:1), from 12 to 145 mg C m-3 for OFMSW (1:1), from 55 to 270 mg C m-3 for RS, from 42 to 855 mg C m-3 for ADS and from 55 to 315 mg C m-3 for AP. Removal efficiencies up to 97% were achieved although they were highly dependent of the composted waste. An important observation was that the compost biofilter emitted VOCs with an estimated concentration of 50 mg C m-3.  相似文献   

8.
Both type and concentration of organic contaminants in landfill leachates show great variation depending on many factors, such as type of wastes, rate of water application, moisture content, landfill design and operation age. In this paper, highly toxic chlorophenol derivatives, poorly biodegradable, carcinogenic existence and recalcitrant properties are determined by solid phase microextraction (SPME)-GC/FID in different leachates from landfill and composting plant in Istanbul. Leachates originated from acidogenic, methanogenic phases of Odayeri sanitary landfill (OSL) and from an aerobic composting plant are considered for different chlorophenol types. It is observed that acidogenic leachate from Odayeri landfill includes 2,4-dichlorophenol, 2,6-dichlorophenol, 2,3,4-trichlorophenol, 2,3,4,5-tetrachlorophenol and 2,3,4,6-tetrachlorophenol at concentration ranges, 15-130, 18-65, 8-40, 5-20 and 10-25 microg/l, respectively. Whereas, only 2,4-dichlorophenol at a concentration range 8-40 microg/l is determined in the methanogenic leachate of the landfill, which can be considered as an indication of reductive dechlorination. There is no chlorophenol derivative in aerobic composting leachate. It is determined that acidogenic leachate from Odayeri landfill includes more species of chlorinated phenols at higher concentration.  相似文献   

9.
The applicability of Fenton's oxidation to improve the biodegradability of a pharmaceutical wastewater to be treated biologically was investigated. The wastewater was originated from a factory producing a variety of pharmaceutical chemicals. Treatability studies were conducted under laboratory conditions with all chemicals (having COD varying from 900 to 7000 mg/L) produced in the factory in order to determine the operational conditions to utilize in the full-scale treatment plant. Optimum pH was determined as 3.5 and 7.0 for the first (oxidation) and second stage (coagulation) of the Fenton process, respectively. For all chemicals, COD removal efficiency was highest when the molar ratio of H(2)O(2)/Fe(2+) was 150-250. At H(2)O(2)/Fe(2+) ratio of 155, 0.3M H(2)O(2) and 0.002 M Fe(2+), provided 45-65% COD removal. The wastewater treatment plant that employs Fenton oxidation followed by aerobic degradation in sequencing batch reactors (SBR), built after these treatability studies provided an overall COD removal efficiency of 98%, and compliance with the discharge limits. The efficiency of the Fenton's oxidation was around 45-50% and the efficiency in the SBR system which has two reactors each having a volume of 8m(3) and operated with a total cycle time of 1 day, was around 98%, regarding the COD removal.  相似文献   

10.
A review of classic Fenton's peroxidation as an advanced oxidation technique   总被引:84,自引:0,他引:84  
Hydrogen peroxide (H(2)O(2)) is a strong oxidant and its application in the treatment of various inorganic and organic pollutants is well established. Still H(2)O(2) alone is not effective for high concentrations of certain refractory contaminants because of low rates of reaction at reasonable H(2)O(2) concentrations. Improvements can be achieved by using transition metal salts (e.g. iron salts) or ozone and UV-light can activate H(2)O(2) to form hydroxyl radicals, which are strong oxidants. Oxidation processes utilising activation of H(2)O(2) by iron salts, classically referred to as Fenton's reagent is known to be very effective in the destruction of many hazardous organic pollutants in water. The first part of our paper presents a literature review of the various Fenton reagent reactions which constitute the overall kinetic scheme with all possible side reactions. It also summarises previous publications on the relationships between the dominant parameters (e.g. [H(2)O(2)], [Fe(2+)], . . .). The second part of our review discusses the possibility of improving sludge dewaterability using Fenton's reagent.  相似文献   

11.
12.
This study related to the analysis of the physical (granulometry and composition) and chemical (organic matter, organic carbon and nitrogen contents) characteristics, as well as those relating to release (leaching tests and determining the methanogene potential) of several domestic wastes, with an aim of evaluating stabilization indicators. Values thresholds for a known stabilized waste were thus deduced by correlation (% paper-cardboard = 0-1; % volatile solid (VS) = 18-19; % OC = 5-6; % fines = 44-45; % degraded components = 75-76, COD of leachate = 141-155 mg O2/L; DOC from leachate = 45-49 mg C/L and 0.9-1 m3 CH4/t of dry waste). However, these values thresholds remain specific to the method employed for the analyses. The results obtained represent a considerable advance in the definition of a waste stabilized state and propose the importance of certain parameters, such as the paper-cardboard content and the measurement of leachates by using the SUVA index for determining a stabilization state.  相似文献   

13.
Removal of COD from landfill leachate by electro-Fenton method   总被引:16,自引:0,他引:16  
The treatment of landfill leachate by electro-Fenton (E-Fenton) method was carried out in a batch electrolytic reactor. The effect of operating conditions such as reaction time, the distance between the electrodes, electrical current, H(2)O(2) to Fe(II) molar ratio, Fenton's reagent dosage and H(2)O(2) feeding mode on the efficacy of E-Fenton process was investigated. It is demonstrated that E-Fenton method can effectively degrade leachate organics. The process was very fast in the first 30 min and then slowed down till it was complete in 75 min. There exists an optimal distance range between the electrodes so that an over 7% higher chemical oxygen demand (COD) removal was achieved than the electrodes positioned beyond this range. COD removal efficiency increased with the increasing current, but further increase of current would reduce the removal efficiency. Organic removal increased as Fenton's reagent dosage increased at the fixed H(2)O(2) to Fe(II) molar ratio. COD removal was only 65% when hydrogen peroxide alone was applied to the electrolytic reactor, and the presence of ferrous ion greatly improved COD removal. COD removal efficiency increased with the increase of ferrous ion dosage at the fixed hydrogen peroxide dose and reached highest at the 0.038 mol/L of ferrous ion concentration. COD removal would decrease when ferrous ion concentration was higher than 0.038 mol/L. The stepwise or continuous addition of hydrogen peroxide was more effective than the addition of hydrogen peroxide in a single step. E-Fenton method showed the synergetic effect for COD removal as it achieved higher COD removal than the total COD removal by electrochemical method and Fenton's reagent.  相似文献   

14.
The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 (+/-0.2) and a total COD of 12,100 (+/-910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32+/-2 degrees C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m3day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe2+ and H2O2 solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H2O2 and Fe2+ dosages, and the ratio of H2O2/Fe2+. Preliminary tests conducted with the dosages of 100 mg Fe2+/L and 200 mg H2O2/L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe2+ and H2O2 were investigated. Under the condition of 400 mg Fe2+/L and 200 mg H2O2/L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe2+/L and 1200 mg H2O2/L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a UASB process followed by Fenton's oxidation technology used as a post-treatment unit.  相似文献   

15.
The examination of the effectiveness of the chemical oxidation using Fenton's reagent (H(2)O(2)/Fe(2+)) for the reduction of the organic content of wastewater generated from a textile industry has been studied. The experimental results indicate that the oxidation process leads to a reduction in the chemical oxygen demand (COD) concentration up to 45%. Moreover, the reduction is reasonably fast at the first stages of the process, since the COD concentration is decreased up to 45% within four hours and further treatment time does not add up to the overall decrease in the COD concentration (48% reduction within six hours). The maximum color removal achieved was 71.5%. In addition, the alterations observed in the organic matter during the development of the process, as indicated by the ratios of COD/TOC and BOD/COD and the oxidation state, show that a great part of the organic substances, which are not completely mineralized, are subjected to structural changes to intermediate organic by-products.  相似文献   

16.
The composition of wastewater from the dyeing and textile processes is highly variable depending on the dyestuff type and typically has high COD and color. This study examined the decolorization of some of the most commonly used disperse and reactive dyestuffs by combination of chemical coagulation and Fenton oxidation. In addition, performances between Fe3+ coagulation and Fenton oxidation of dye solutions were compared by measuring COD and dye removals, distributions of zeta potential, concentration of suspended solid were investigated. Fenton oxidation in combination with Fe3+ coagulation has shown to effectively remove COD and dye. About 90% of COD and 99% of dye removals were obtained at the optimum conditions. Compared to reactive dyes, disperse dyes have lower solubility, higher suspended solids concentrations and lower SCOD/TCOD ratios. The COD and dye removed per unit Fe3+ coagulant added for disperse dye solutions were higher than those for reactive dye solutions. Therefore, the disperse dye solutions are more easily decolorized by chemical coagulation than reactive dye solutions. Conversely, reactive dye solutions have higher applicability of Fenton oxidation than disperse dye solutions due to their higher solubility, lower suspended solids concentrations and higher SCOD/TCOD ratios. The COD and dye removed per Fe2+ Fenton reagent added for reactive dye solutions are respectively higher than those for disperse dye solutions.  相似文献   

17.
The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H(2)O(2) dose, Fe(+2), COD:H(2)O(2) ratio and Fe(+2):H(2)O(2) ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48h (24h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l(-1) for rho-hydroxy-benzaldhyde to 3.273 mg l(-1) for cinnamic acid.  相似文献   

18.
Application of Fenton oxidation to cosmetic wastewaters treatment   总被引:1,自引:0,他引:1  
The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.  相似文献   

19.
The effluent stream from the industrial production of the herbicide trifluraline (amination water) was submitted to a combined treatment of a physical-chemical process (coagulation) with an advanced oxidation process (Fenton). The recovering of the residual sludge was performed. The combined coagulation-Fenton-sedimentation process proved to be very suitable for wastewater color reduction (91.6%), promoting considerable abatement of the organic load (63.4% COD reduction). According to the fractionary factorial design, the main effects of pH (A) and Fenton sludge (B) variables were considered statistical fluctuations of the process (and not decisive), while the main effects of Fe(3+) (C), Fe(2+) (D) and H(2)O(2) (E), as well as the interactions between variables A and B, A and E, C and D and C and E were considered significant. The obtained results suggest that the combined process can be advantageous for the treatment of recalcitrant industrial effluents, such as the amination water from the trifluraline production.  相似文献   

20.
Photodegradation of direct yellow-12 using UV/H2O2/Fe2+   总被引:6,自引:0,他引:6  
A detailed investigation of photodegradation of direct yellow-12 (DY12) using UV/H(2)O(2)/Fe(2+) has been carried out in a photochemical reactor. Experiments studied degradation as a function of concentration, decolorization and reduction in chemical oxygen demand (COD). The effect of operating parameters, such as UV, pH, amount of Fenton's reagent (H(2)O(2) and FeSO(4)), and amount of DY12 dye has also been determined. It has been observed that simultaneous utilization of UV irradiation with Fenton's reagent increases the degradation rate of DY12 dye. The dye quickly losses its color and there is an appreciable decrease in COD value, indicating that the dissolved organic have been oxidized. The kinetics of degradation of the dye in dilute aqueous solutions follows pseudo-first order kinetics. Final products detected at the end of the reaction include NO(3)(-), NO(2)(-), N(2)O, NO(2), SO(2), CO(2) and CO. Results indicate that dye degradation is dependent upon pH, UV-intensity, concentration of Fenton's reagent and dye. Acidic pH has been found to be more suitable in comparison to neutral and alkaline. The optimum concentration of Fenton's reagent (H(2)O(2)/Fe(2+)) was found as 1500/500 mg l(-1) for 50 mg l(-1) DY12 dye in water at pH 4. The results indicate that the treatment of DY12 dye wastewater with UV/Fe(2+)/H(2)O(2) system is efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号