共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
根据热传导理论,结合热流密度,考虑摩擦片上沟槽的对流换热作用,建立了液黏调速离合器摩擦副的理论模型。根据离合器实际工况,对摩擦副边界摩擦阶段进行数值分析,研究摩擦副不同材料组合下的温度与变形差异。研究结果表明,摩擦副温度场被沟槽分成了不同温度梯度的椭圆块,高温集中在靠近外径处;相同工况下,对偶片材料为30CrMnSiA时温度和变形量最大。摩擦副内外径发生了沿z轴正向和负向位移,整个摩擦副产生碟形翘曲现象。在对偶片外径约束情况下,仅30CrMnSiA未发生塑性变形。这对液黏传动机理和摩擦副主动设计具有指导意义。 相似文献
5.
离合器摩擦副表面温度对摩擦因数的影响 总被引:2,自引:0,他引:2
通过对某型离合器摩擦副的摩擦学小样试验,研究了离合器在结合的滑动摩擦过程中,摩擦面温度对离合器摩擦材料摩擦因数的影响.采用扫描电子显微镜(SEM),分析了样件的摩擦表面形貌,探讨了产生影响的机制,并从摩擦因数角度探讨了微车离合器起步发抖和烧蚀的主要原因.微车离合器摩擦材料摩擦因数随着摩擦面温度先升高,然后趋于稳定,最后再降低,其稳定工作的温度区间为130~220℃;在摩擦面温度较低的工况下,摩擦因数较低,微车起步时,离合器传递的扭矩不足以克服道路阻力,引起微车起步发抖的现象;而在摩擦面温度过高的工况下,离合过程中,摩擦因数较低,传递扭矩效率低,导致离合器滑磨时间过长,引起烧蚀现象. 相似文献
6.
《机械设计与制造》2016,(11)
温度对湿式离合器摩擦副的性能和寿命具有重要影响。针对某款变速箱湿式离合器的工作接合过程,以一档离合器为例,结合热分析和有限元理论分析,对摩擦生热过程中的热传导和热流密度进行分析,确定热传导边界条件和初始条件,并建立湿式摩擦副的温度分布函数,获得不同结合次数温度分布。基于ANSYS瞬态热分析模块,根据摩擦生热原理,建立摩擦副分析模型,获得工作过程中温度分布规律;对不同时间情况下,主、从片的温度分布进行分析;对比分析不同的油槽花纹与从动片尺寸对温度场的影响。对比分析结果可知:油槽花纹与其尺寸的选择对温度场分布影响较大;双圆弧形油槽综合最优;模型分析和理论分析结果的一致性验证分析方法的正确性;通过改变摩擦副材料物理属性、结构尺寸和加载条件来分析其他工况情况,进而得出不同条件下摩擦副温度分布的情况。 相似文献
7.
8.
9.
为了研究工况参数和结构参数对单锥环同步器摩擦副温度场和应力场的影响规律,结合同步器实际结构和工作条件,运用Abaqus软件建立摩擦副热-结构的有限元分析模型,采用直接耦合法及控制变量法对单锥环同步器换挡过程中的温度场和应力场进行分析。研究结果表明,单锥环同步器摩擦副的转速差、滑摩时间及接合正压力的增加都使其温度升高和应力增大,其中,增大正压力对其影响尤为显著;初始温度降低不改变同步换挡过程的温升量,但同步环应力显著下降。摩擦锥面锥角减小使温度和应力减小,而同步环内径减小使相同条件下的温度和应力增大。摩擦副温度沿轴向和径向呈递减趋势,沿周向呈均匀分布。 相似文献
10.
11.
12.
13.
基于ANSYS的离合器压盘有限元设计 总被引:1,自引:0,他引:1
离合器是汽车传动系中的重要总成,压盘是离合器的主要零件之一,对离合器性能具有很大的影响.采用有限元技术对离合器压盘进行设计研究.基于建立的压盘实体模型,进行有限元分析,得出了热载荷下压盘的应力分布及变形情况.根据分析结果对压盘的摩擦面进行改进设计,得出了合理的压盘设计方案. 相似文献
14.
15.
机床热误差是影响高精密机床加工精度的重要因素之一,而目前对机床热误差的分析比较少,以机床导轨为研究对象提出了一种结合有限元理论的导轨热误差确定方法,将数值模拟技术和实际测量实验相结合,利用实验测量数据修正有限元分析边界条件,从而得到准确的导轨热变形计算结果,证明了该热误差确定方法应用到实际机床导轨热误差确定和补偿方面的... 相似文献
16.
17.
18.
19.
Covill D Guan ZW Bailey M Raval H 《Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine》2011,225(3):268-281
Thermal comfort is increasingly becoming a crucial factor to be considered in footwear design. The climate inside a shoe is controlled by thermal and moisture conditions and is crucial to attain comfort. Research undertaken has shown that thermal conditions play a dominant role in shoe climate. Development of thermal models that are capable of predicting in-shoe temperature distributions is an effective way forward to undertake extensive parametric studies to assist optimized design. In this paper, two-dimensional and three-dimensional thermal models of in-shoe climate were developed using finite element analysis through commercial code Abaqus. The thermal material properties of the upper shoe, sole, and air were considered. Dry heat flux from the foot was calculated on the basis of typical blood flow in the arteries on the foot. Using the thermal models developed, in-shoe temperatures were predicted to cover various locations for controlled ambient temperatures of 15, 25, and 35 degrees C respectively. The predicted temperatures were compared with multipoint measured temperatures through microsensor technology. Reasonably good correlation was obtained, with averaged errors of 6, 2, and 1.5 per cent, based on the averaged in-shoe temperature for the above three ambient temperatures. The models can be further used to help design shoes with optimized thermal comfort. 相似文献