共查询到20条相似文献,搜索用时 0 毫秒
1.
Very low temperature radiant heating/cooling indoor end system for efficient use of renewable energies 总被引:2,自引:0,他引:2
Solar or solar-assisted space heating systems are becoming more and more popular. The solar energy utilization efficiency is high when the collector is coupled with indoor radiant heating suppliers, since in principle, lower supply temperature means lower demand temperature and then the system heat loss is less. A new type radiant end system is put forward for even lower supply temperature compared to the conventional radiant floor heating systems. A three dimensional model was established to investigate its energy supply capacities. Simulation results show that 50 W per meter length tube can be achieved with the medium temperature of 30 °C for heating and 15 °C for cooling. The predicted results agree well with the actual data from a demonstration building. Furthermore, it is demonstrated that a supply temperature of 22 °C in winter and of 17 °C in summer already met the indoor requirements. The new end system has good prospects for effective use of local renewable resources. 相似文献
2.
3.
Ceiling radiant cooling panel capacity enhanced by mixed convection in mechanically ventilated spaces 总被引:1,自引:0,他引:1
The main thrust of this research is to estimate the impact of the mixed convection effect on the cooling capacity of a ceiling radiant panel in mechanically ventilated spaces. To estimate panel cooling capacity enhancement caused by mixed convection, a verified analytical panel model was used. The simplified correlation for mixed convection heat transfer coefficient which can be easily adopted in panel cooling capacity estimation was derived from established mixed convection and natural convection correlations. It was found that the total cooling capacity of radiant panels can be enhanced in mixed convection situations by 5–35% under normal operating panel surface temperatures. 相似文献
4.
5.
Free cooling of a building using PCM heat storage integrated into the ventilation system 总被引:3,自引:0,他引:3
This article presents a study of the free cooling of a low-energy building using a latent-heat thermal energy storage (LHTES) device integrated into a mechanical ventilation system. The cylindrical LHTES device was filled with spheres of encapsulated RT20 paraffin, a phase-change material (PCM). A numerical model of the LHTES was developed to identify the parameters that have an influence on the LHTES’s thermal response, to determine the optimum phase-change temperature and to form the LHTES’s temperature-response function. The last of these defines the LHTES’s outlet-air temperature for a periodic variation of the inlet ambient-air temperature and the defined operating conditions. The temperature-response function was then integrated into the TRNSYS building thermal response model. Numerical simulations showed that a PCM with a melting temperature between 20 and 22 °C is the most suitable for free cooling in the case of a continental climate. The analyses of the temperatures in a low-energy building showed that free cooling with an LHTES is an effective cooling technique. Suitable thermal comfort conditions in the presented case-study building could be achieved using an LHTES with 6.4 kg of PCM per square metre of floor area. 相似文献
6.
7.
8.
地板辐射式供暖的能耗分析 总被引:3,自引:0,他引:3
依据辐射供热室内辐射与对流综合作用的传热规律,计算和分析了地板辐射式采暖房间能耗的构成及影响因素,给出在相同舒适度条件下,几种常见的围护结构地板辐射式供暖房间的能耗随地表面加热温度的变化关系,并与相应的对流式采暧进行了对比。 相似文献
9.
对地板辐射和风机盘管两种采暖方式进行了实验研究和理论分析,提出了围护结构临界热阻临的概念,推导出了两个采暖系统的热舒适性随围护结构热阻和冷风渗透量波动的变化关系。实验验证了地板辐射采暖既改善了室内热环境又显示较好的节能效果。 相似文献
10.
11.
介绍了顶板冷辐射与置换通风相结合的空调系统特点,分析了该系统在改善室内空气品质和满足人体的热舒适性方面的特点,评价了该系统的节能效果和经济性。 相似文献
12.
The solar heating and nocturnal radiant cooling techniques are combined aiming at a novel solar heating and cooling panel (termed as SHCP) to be easily assembled as construction components for building roofing or envelope and also compatible with surroundings for its versatile coating colors, which can remove the double-skin mode from conventional solar equipment. SHCP has two functions for heating and cooling collecting. In this paper, the heating and cooling performances were analyzed in detail based on a small scale experimental system and effects of air gap and coatings were investigated. The results show that in sunny day of extreme cold January in Tianjin, China, the daily average heat-collecting efficiency is 39% with the maximum of 65%, while in sunny night during hot seasons the average cooling capacity can reach 87 W/m2. When two different coatings were sprayed on SHCP without air gap, its heating and cooling performances were all analyzed, the daily average heat-collecting efficiency was 39% and 27% with the maximum points of 65% and 49%, respectively, and the cooling capacity was almost the same of 30 W/m2 in January. 相似文献
13.
14.
An experiment has been performed to investigate the cooling performance of a thermoelectric ceiling cooling panel (TE‐CCP). The TE‐CCP was composed of 36 TE modules. The cold side of the TE modules was fixed to an aluminum ceiling panel to cool a test chamber of 4.5 m3 volume, while a copper heat exchanger with circulating cooling water at the hot side of the TE modules was used for heat release. Tests were conducted using various system parameters. It was found that the cooling performance of the system depended on the electrical supply, cooling water temperature and flow rate through the heat exchanger. A suitable condition occurred at 1.5 A of current flow with a corresponding cooling capacity of 289.4 W which gives the coefficient of performance (COP) of 0.75 with an average indoor temperature of 27°C. Using thermal comfort test data in literature for small air movements under radiant cooling ceilings, results from the experiments show that thermal comfort could be obtained with the TE‐CCP system. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
15.
Performance analysis of phase-change material storage unit for both heating and cooling of buildings
Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ~29°C in summer and 21°C during winter season. The appropriate melting point was ~27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa. 相似文献
16.
17.
浅层地下水作为冷源应用于地板供冷来改善建筑内部的人工环境 ,一方面是对国家提倡建筑节能的大力支持 ;另一方面也是可再生能源研究和利用的新的有益探索。基于以上两点 ,本文介绍了地板供冷和地下水与地板供冷两者结合使用的优点。 相似文献
18.
Both intermittent and continuous heating are widely used for radiant floor heating systems in Korea, Intermittent heating circulates hot water according to a predefined schedule while the continuous heating controls water flow using thermostat control units. The standard version of SERI‐RES has been modified for the numerical simulation of the problem. Results show relatively large temperature swings in the case of intermittent heating with solar availability, although it costs less to implement due to its simplicity in design. On the other hand, the case of continuous heating would avoid such undesirable temperature fluctuations. These results are also verified by experimental evaluations. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
19.
Integrated control by controlling both natural ventilation and HVAC systems based on human thermal comfort requirement can result in significant energy savings. The concept of this paper differs from conventional methods of energy saving in HVAC systems by integrating the control of both these HVAC systems and the available natural ventilation that is based on the temperature difference between the indoor and the outdoor air. This difference affects the rate of change of indoor air enthalpy or indoor air potential energy storage. However, this is not efficient enough as there are other factors affecting the rate of change of indoor air enthalpy that should be considered to achieve maximum energy saving. One way of improvement can be through the use of model guide for comparison (MGFC) that uses physical-empirical hybrid modelling to predict the rate of change of indoor air potential energy storage considering building fabric and its fixture. Three methods (normal, conventional and proposed) are tested on an identical residential building model using predicted mean vote (PMV) sensor as a criterion test for thermal comfort standard. The results indicate that the proposed method achieved significant energy savings compared with the other methods while still achieving thermal comfort. 相似文献
20.
The main objective of this study is to develop and test hybrid ventilation systems and control strategies that are suitable for residential buildings. Two ventilation systems were modelled: a mechanical extract ventilation system (called the reference system) and a hybrid low pressure ventilation system that can support two different types of demand control strategies (occupancy detection and CO2 concentration). The newly developed models were assembled with the existing thermal models of the SIMBAD Building and HVAC Toolbox developed by the CSTB.A single family house located in Athens (Greece), Nice (France), Trappes (France) and finally Stockholm (Sweden) was considered as the case study. Yearly simulations were performed to assess the performance of the hybrid ventilation control strategies. The assessment criteria used are related to indoor air quality, thermal comfort, energy consumption and stability of control strategies. The results show that the low pressure ventilation system can improve the indoor air quality and reduce the fan energy consumption compared to the reference system while maintaining the same building energy consumption for heating. 相似文献