首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以洗油为供氢溶剂,考察了溶煤比、反应温度和氢初压对新疆五彩湾煤样加氢液化性能的影响.结果表明,在煤液化中,洗油部分加氢,生成具有强供氢能力的物质,增强其供氢能力,可以作液化溶剂,且溶煤比由四氢萘为溶剂的3降低到1.75;虽然氢初压为8.0 MPa,但反应终压为16.3 MPa,与四氢萘为溶剂时相当;油产率达到59.24%,转化率达到81.05%.  相似文献   

2.
在30mL油品加氢实验装置上,进行煤直接液化全馏分油中重质油(320℃)加氢实验,考察反应温度、压力和体积空速变化对加氢生成油物性的影响.结果表明,油品的脱硫率和脱氮率与反应温度和反应压力成正比,与体积空速成反比;升高反应温度和反应压力或降低体积空速,都有利于加氢油品中单环芳烃和双环芳烃质量分数的增加、多环芳烃质量分数的减少.计算得到的油品供氢指数(IPDQ)增加,从而溶剂供氢能力增加.不同加氢条件下得到的油品物性表明,反应温度为380℃,压力为19MPa,体积空速为0.8/h时,得到的重质馏分油作为煤液化循环溶剂使用时供氢性最好.  相似文献   

3.
为研究新疆淖毛湖煤直接液化反应特性和产品分布规律,在0.5 L间歇式高压釜中,以四氢萘为溶剂,纳米氧化铁为催化剂及S为助剂,考察了不同反应温度、反应时间条件对煤转化率和液化产物收率的影响。结果表明:淖毛湖煤易液化,在反应器温度刚加热到425℃时,煤转化率和液化油收率已分别达到96.6%、56.68%;随着反应温度的升高以及反应时间的延长,煤转化率、氢耗、气体产率、油收率逐渐增加,而沥青类物质产率下降,水产率基本保持不变;当反应温度进一步增加以及反应时间继续延长,轻质油将会发生裂解,导致气体产率进一步增加,而油收率有所降低。当反应温度为455℃、反应时间为80 min时,煤转化率达到99.6%,油、沥青和气体收率分别为73.42%、1.64%、16.61%,氢耗为4.85%。基于液化试验结果,建立了5集总的反应动力学模型,采用优化算法获得动力学模型参数,煤转化率、沥青类物质和油气收率的模拟值和试验值的相对误差分别为0.5%、1.0%、8.0%。  相似文献   

4.
研究悬浮床加氢过程中供氢溶剂性能与煤焦油沥青加氢裂化反应间的关系。考察了反应温度和初始压力对供氢溶剂油预加氢深度的影响,探讨了供氢溶剂对高温煤焦油沥青加氢反应中沥青质裂化作用机理。结果表明,随着加氢反应程度的增加(初始氢气压力增加、反应温度增加),供氢溶剂油的芳碳率逐渐降低;在初始氢气压力10 MPa、反应温度350℃的加氢工艺条件下,可得到芳碳率为0. 42的理想供氢溶剂。在煤焦油沥青加氢反应过程中,随着供氢溶剂添加量的增加,大于350℃重油馏分的收率有所降低;生成的重油中胶质、沥青质的质量分数明显降低,转化率分别由64. 00%和82. 61%提高到了81. 98%和89. 21%;芳烃质量分数大幅度增加,说明供氢溶剂对胶质和沥青质的加氢裂化具有促进作用。  相似文献   

5.
以杨村煤为例,在490℃和2倍四氢萘溶剂的条件下,反应仅5min煤直接液化总转化率就达到84.47%,表明煤在直接液化的过程中具有初始高反应活性的特点。在纯氢气气氛下随着初始压力从1.5MPa增大到7MPa,转化率从66.38%上升为83.27%,表明压力大小对煤液化转化率有较大影响。1.5MPa下溶煤比提高到4:1以后,转化率增大到79.0%就不再增长,表明用添加过量供氢溶剂的方法弥补由于降低系统压力所带来的转化率损失不可行。  相似文献   

6.
为考察溶剂供氢性对加氢改质的影响,以四氢萘与甲基萘为溶剂,对低阶煤进行轻度加氢,考察不同反应条件对转化率、气产率、氢耗及产物分布的影响。结果表明,温度对转化率及气产率的影响显著,在360~430℃,随着温度升高,转化率及气产率增加显著;在氢压低于4 MPa时,脱氢反应体现较为显著,体系中有大量萘生成,压力对转化率及气产率的影响不明显,低压条件下,四氢萘供氢起主导作用;气相氢并不直接参与煤的反应,而是与溶剂发生加氢反应,进而由溶剂向煤供氢;低阶煤轻度加氢改质是一个快速反应的过程,反应时间不宜过长,30~60 min为宜;对改质后产物进行分析,黏结指数G75,灰分0.3%,硫含量0.3%。  相似文献   

7.
以长庆催化裂化重油(FCC)和催化裂解重油(DCC)两种重油及魏墙煤(WQ)为原料,通过重油热处理、加氢处理及油煤共液化,利用元素分析、红外光谱分析及热重分析等手段对产物结构组成进行了分析表征,考察了两种重油热稳定性及其对油煤共加氢液化性能的影响。结果表明:重油高温热稳定性较差,热处理后正己烷不溶物质量分数明显提高;FCC易于脱氢芳构化,DCC以极性组分缩合为主,催化加氢能够抑制FCC高温脱氢;以FeS+S为催化剂催化时,供氢溶剂四氢萘(THN)中WQ液化转化率显著高于非供氢溶剂甲苯中WQ液化转化率,440℃时THN溶剂中WQ转化率最高,达到71.2%;油煤共加氢液化时,FCC和DCC都可以不同程度促进WQ转化,两种溶剂中WQ共液化转化率最高分别达到80.3%(FCC,420℃)和83.5%(DCC,420℃),但是沥青烯(AS)和前沥青烯(PA)等重质产物收率高;重油热稳定性是影响油煤共液化及液化产物分布的重要因素,重油主要通过自身缩合以及与煤共液化产物作用形成重质产物;FCC/WQ共液化重质产物以AS为主,主要来自于FCC脱氢缩合;DCC/WQ共液化时DCC极性组分缩合形成以PA为...  相似文献   

8.
以神华煤直接液化示范装置原料煤为原料,在0.18 t/d煤直接液化连续试验装置上考察了外来油添加种类、添加方式及添加量对反应结果的影响。结果表明,在煤直接液化过程中添加煤焦油系外来油,神东煤的转化率和油收率均降低,添加量越高,降幅越大;煤焦油经预加氢处理,可提高目标产品产量。蒽油添加在煤浆制备部分比添加在溶剂加氢原料部分更为有利,添加量为10%装置负荷时,前者油收率高于后者1.7%以上,分别为47.97%和46.22%。在煤浆制备过程中添加外来油替代13%的循环溶剂,对神东煤的油收率影响程度由大到小顺序为煤焦油、50%蒽油+50%煤焦油、蒽油、洗油,其中洗油影响程度最小,蒸馏油收率约降低了1%;蒽油次之,蒸馏油收率约降低了2.5%,煤焦油最大,蒸馏油收率约降低了5%。  相似文献   

9.
以新疆淖毛湖煤和四氢萘为原料,在2L高压釜中进行加氢液化实验,开展新疆淖毛湖煤直接液化过程调控研究,考查了温度、压力、时间及催化剂对氢耗、气产率、转化率、油产率和沥青类物质产率的影响规律,探讨了复杂多相体系液化产物中氢的分布规律,揭示了煤直接加氢液化反应与氢分布规律的内在联系.结果表明:在420℃,15MPa和60min的反应条件下,淖毛湖煤的转化率为94%,油产率为65%,是适宜直接液化的优良煤种;氢较均匀地分布在淖毛湖煤加氢液化的轻质产物(水、150℃馏分油、150℃~260℃馏分油和260℃~350℃馏分油)中,在350℃重质馏分油中分布最高,接近30%;氢在液化产物中的分布与加氢液化反应效果呈现出正相关特征.  相似文献   

10.
在高压反应釜内,以四氢萘为供氢溶剂,Fe2O3+S为催化剂,研究了温度、反应时间、初始氢压、配比对兖州煤与秸秆共液化的影响。结果表明,提高反应温度,转化率、油产率增加;延长反应时间对转化率、油产率的影响较小;升高初始氢压,转化率、油产率刚开始增加,6 MPa以后增幅趋缓;在m(秸秆)∶m(兖州煤)=0.5∶9.5时,共液化的油产率为60.45%,比兖州煤单独液化的油产率提高了4.17%;在m(兖州煤)∶m(秸秆)=9.5∶0.5,440℃,8 MPa,90 min的条件下,共液化转化率和油产率达到最大,分别为83.58%和63.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号