首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
多示例多标签学习是一种新型的机器学习框架。在多示例多标签学习中,样本以包的形式存在,一个包由多个示例组成,并被标记多个标签。以往的多示例多标签学习研究中,通常认为包中的示例是独立同分布的,但这个假设在实际应用中是很难保证的。为了利用包中示例的相关性特征,提出了一种基于示例非独立同分布的多示例多标签分类算法。该算法首先通过建立相关性矩阵表示出包内示例的相关关系,每个多示例包由一个相关性矩阵表示;然后建立基于不同尺度的相关性矩阵的核函数;最后考虑到不同标签的预测对应不同的核函数,引入多核学习构造并训练针对不同标签预测的多核SVM分类器。图像和文本数据集上的实验结果表明,该算法大大提高了多标签分类的准确性。  相似文献   

2.
零样本多标签图像分类是对含多个标签且测试类别标签在训练过程中没有相应训练样本的图像进行分类标注。已有的研究表明,多标签图像类别间存在相互关联,合理利用标签间相互关系是多标签图像分类技术的关键,如何实现已见类到未见类的模型迁移,并利用标签间相关性实现未见类的分类是零样本多标签分类需要解决的关键问题。针对这一挑战性的学习任务,提出一种深度示例差异化分类算法。首先利用深度嵌入网络实现图像视觉特征空间至标签语义特征空间的跨模态映射,然后在语义空间利用示例差异化算法实现多标签分类。通过在主流数据集Natural Scene和IAPRTC-12上与已有算法进行对比实验,验证了所提方法的先进性和有效性,同时验证了嵌入网络的先进性。  相似文献   

3.
作为监督学习的一种变体,多示例学习(MIL)试图从包中的示例中学习分类器。在多示例学习中,标签与包相关联,而不是与单个示例相关联。包的标签是已知的,示例的标签是未知的。MIL可以解决标记模糊问题,但要解决带有弱标签的问题并不容易。对于弱标签问题,包和示例的标签都是未知的,但它们是潜在的变量。现在有多个标签和示例,可以通过对不同标签进行加权来近似估计包和示例的标签。提出了一种新的基于迁移学习的多示例学习框架来解决弱标签的问题。首先构造了一个基于多示例方法的迁移学习模型,该模型可以将知识从源任务迁移到目标任务中,从而将弱标签问题转换为多示例学习问题。在此基础上,提出了一种求解多示例迁移学习模型的迭代框架。实验结果表明,该方法优于现有多示例学习方法。  相似文献   

4.
多示例多标记学习(Multi-Instance Multi-Label,MIML)是一种新的机器学习框架,基于该框架上的样本由多个示例组成并且与多个类别相关联,该框架因其对多义性对象具有出色的表达能力,已成为机器学习界研究的热点.解决MIML分类问题的最直接的思路是采用退化策略,通过向多示例学习或多标记学习的退化,将MIML框架下的分类问题简化为一系列的二类分类问题进行求解.但是在退化过程中会丢失标记之间的关联信息,降低分类的准确率.针对此问题,本文提出了MIMLSVM-LOC算法,该算法将改进的MIMLSVM算法与一种局部标记相关性的方法ML-LOC相结合,在训练过程中结合标记之间的关联信息进行分类.算法首先对MIMLSVM算法中的K-medoids聚类算法进行改进,采用的混合Hausdorff距离,将每一个示例包转化为一个示例,将MIML问题进行了退化.然后采用单示例多标记的算法ML-LOC算法继续以后的分类工作.在实验中,通过与其他多示例多标记算法对比,得出本文提出的算法取得了比其他分类算法更优的分类效果.  相似文献   

5.
在多示例学习中引入利用未标记示例的机制,能降低训练的成本并提高学习器的泛化能力。当前半监督多示例学习算法大部分是基于对包中的每一个示例进行标记,把多示例学习转化为一个单示例半监督学习问题。考虑到包的类标记由包中示例及包的结构决定,提出一种直接在包层次上进行半监督学习的多示例学习算法。通过定义多示例核,利用所有包(有标记和未标记)计算包层次的图拉普拉斯矩阵,作为优化目标中的光滑性惩罚项。在多示例核所张成的RKHS空间中寻找最优解被归结为确定一个经过未标记数据修改的多示例核函数,它能直接用在经典的核学习方法上。在实验数据集上对算法进行了测试,并和已有的算法进行了比较。实验结果表明,基于半监督多示例核的算法能够使用更少量的训练数据而达到与监督学习算法同样的精度,在有标记数据集相同的情况下利用未标记数据能有效地提高学习器的泛化能力。  相似文献   

6.
目的在多标签有监督学习框架中,构建具有较强泛化性能的分类器需要大量已标注训练样本,而实际应用中已标注样本少且获取代价十分昂贵。针对多标签图像分类中已标注样本数量不足和分类器再学习效率低的问题,提出一种结合主动学习的多标签图像在线分类算法。方法基于min-max理论,采用查询最具代表性和最具信息量的样本挑选策略主动地选择待标注样本,且基于KKT(Karush-Kuhn-Tucker)条件在线地更新多标签图像分类器。结果在4个公开的数据集上,采用4种多标签分类评价指标对本文算法进行评估。实验结果表明,本文采用的样本挑选方法比随机挑选样本方法和基于间隔的采样方法均占据明显优势;当分类器达到相同或相近的分类准确度时,利用本文的样本挑选策略选择的待标注样本数目要明显少于采用随机挑选样本方法和基于间隔的采样方法所需查询的样本数。结论本文算法一方面可以减少获取已标注样本所需的人工标注代价;另一方面也避免了传统的分类器重新训练时利用所有数据所产生的学习效率低下的问题,达到了当新数据到来时可实时更新分类器的目的。  相似文献   

7.
多示例多标记是一种新的机器学习框架,在该框架下一个对象用多个示例来表示,同时与多个类别标记相关联。MIMLSVM+算法将多示例多标记问题转化为一系列独立的二类分类问题,但是在退化过程中标记之间的联系信息会丢失,而E-MIMLSVM+算法则通过引入多任务学习技术对MIMLSVM+算法进行了改进。为了充分利用未标记样本来提高分类准确率,使用半监督支持向量机TSVM对E-MIMLSVM+算法进行了改进。通过实验将该算法与其他多示例多标记算法进行了比较,实验结果显示,改进算法取得了良好的分类效果。  相似文献   

8.
在多示例学习框架下,训练数据集由若干个包组成,包内含有多个用属性-值对形式表示的示例,系统对包内的多个示例进行学习。传统的基于多示例学习的局部离群点检测算法将多示例学习框架运用到数据集上,将多示例问题转化为单示例问题进行处理。但在示例包的转换过程中采用示例内部的特征长度所占比作为权重机制,并没有考察对结果影响较大的示例,分析原因或者动态调整其权重,从而对离群点检测的效果造成影响。针对这一问题,为了充分适应数据内部的分布特征,提出了一种基于多示例学习的局部离群点改进算法FWMIL-LOF。算法采用MIL(Multi-Instance Learning)框架,在示例包的转换过程中引入描述数据重要度的权重函数,通过定义惩罚策略对权重函数做相应调整,从而确定了不同特征属性的示例在所属包中的权重。在实际企业的实时采集监控系统中,通过仿真分析,并与其他经典局部离群点检测算法进行对比,验证了改进算法在离群点检测效果方面的提高。  相似文献   

9.
钱龙  赵静  韩京宇  毛毅 《计算机工程》2022,48(6):73-78+88
多标签学习是机器学习领域的一个研究热点,其能够有效解决真实世界中的多语义问题。在多标签学习任务中,样本的多个标签之间存在一定的关联关系,忽略标签间的相关性会导致模型的泛化性能降低。提出一种基于标签间相关性的多标签学习K近邻算法。充分挖掘样本多标签间的相关性,通过Fp_growth算法得到标签的频繁项集。针对频繁项和标签分别构建评分模型和阈值模型,评分模型用于衡量样本与频繁项或标签之间的关联程度,阈值模型用于求解频繁项或标签对应的判别阈值,结合评分模型和阈值模型对样本所属频繁项进行预测,进而确定样本标签集。在经典数据集Emotions和Scene上的实验结果表明,该算法的F1-Measure指标分别达到66.6%和73.3%,相比CC、LP、RAKEL、MLDF等基准方法,其F1-Measure分别平均提高3.8和2.1个百分点,该算法通过合理利用标签间的相关性使得分类性能得到有效提升。  相似文献   

10.
甘睿  印鉴 《计算机科学》2012,39(7):144-147
在多示例学习问题中,训练数据集里面的每一个带标记的样本都是由多个示例组成的包,其最终目的是利用这一数据集去训练一个分类器,使得可以利用该分类器去预测还没有被标记的包。在以往的关于多示例学习问题的研究中,有的是通过修改现有的单示例学习算法来迎合多示例的需要,有的则是通过提出新的方法来挖掘示例与包之间的关系并利用挖掘的结果来解决问题。以改变包的表现形式为出发点,提出了一个解决多示例学习问题的算法——概念评估算法。该算法首先利用聚类算法将所有示例聚成d簇,每一个簇可以看作是包含在示例中的概念;然后利用原本用于文本检索的TF-IDF(Term Frequency-Inverse Document Frequency)算法来评估出每一个概念在每个包中的重要性;最后将包表示成一个d维向量——概念评估向量,其第i个位置表示第i个簇所代表的概念在某个包中的重要程度。经重新表示后,原有的多示例数据集已不再是"多示例",以至于一些现有的单示例学习算法能够用来高效地解决多示例学习问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号