共查询到20条相似文献,搜索用时 62 毫秒
1.
基于PSO神经网络的故障诊断方法研究 总被引:1,自引:0,他引:1
将粒子群优化算法和BP算法相结合,提出了一种基于粒子群神经网络的故障诊断方法.该方法分阶段实施神经网络的训练,有效地加强了算法的全局搜索能力,采用PSO优化了传播中的权值、阈值以及网络结构.这不仅弥补了BP算法的不足,而且删除了冗余连接,提高了故障模式识别的能力.仿真结果表明该方法加快了神经网络的学习收敛速度,提高了故障模式的识别正确率,可以有效地应用于设备的故障诊断. 相似文献
2.
3.
4.
运用db5小波对故障电弧信号进行4层分解,提取故障频段能量谱作为特征量,建立BP神经网络.用粒子群优化(PSO)算法优化BP神经网络,从而快速准确地对故障电弧特征量进行拟合,用训练后的神经网络对故障电弧进行预测,达到了较好的预测识别效果,验证了该串联型故障电弧识别方法的有效性. 相似文献
5.
基于扩展T-S模型的PSO神经网络在故障诊断中的应用 总被引:1,自引:0,他引:1
针对现实故障现象具有模糊性和非线性的特点,提出了一种利用自适应扩展T-S(Takagi-Sugeno)模糊模型的PSO(Particle Swarm Optimization)算法和神经网络相结合的新型智能结构化算法来进行故障诊断的新方法.首先通过自适应的高斯函数来更改基本T-S模糊模型中的隶属度函数,进而使用扩展的T-S模糊模型来调整PSO算法的参数.然后使用该PSO算法作为神经网络的学习训练算法来进行训练.最后将此算法用于齿轮箱实测故障诊断.诊断结果显示均方误差提高了0.1981%.通过不同模型的诊断结果比较,表明本方法便捷、高效,为解决故障诊断问题提供了一条新途径. 相似文献
6.
7.
8.
提出一种基于人工鱼群算法和粒子群算法混合训练BP网络的故障诊断系统.采用人工鱼群算法和粒子群算法结合算法训练神经网络权值,局部搜索速度快且保证全局收敛,有效克服了传统的BP神经网络收敛速度慢且容易陷入局部极值的缺点.将该网络用于齿轮箱故障诊断,并与传统BP模型用于故障诊断结果进行了比较,取得了较好的效果. 相似文献
9.
齿轮箱作为风机传动系统重要的机械部件长期工作在恶劣环境中易于发生故障。针对风机齿轮箱产生的振动信号具有非平稳、瞬态、不确定性、以及外界干扰因素等特点,提出了小波包与改进的BP神经网络相结合方法。首先提取原始振动信号的时域波形,利用小波包对于时域特征值进行分解,将小波包分解后的子频带能量进行归一化计算,并作为BP网络的输入特征向量,其次创建BP故障模型,通过改进的优化算法对神经网络的权值和阈值进行全局寻优,最终使得对故障类型进行精确的判断,提高了故障诊断效率。仿真结果比较了两种优化算法的性能指标,得出改进的蚁群算法(MMA)优化算法识别精度更高,误差相对较小,收敛速度更快,验证了方法的有效性和可靠性。 相似文献
10.
11.
针对标准BP算法收敛速度慢及易陷入局部极值等问题,提出一种基于粒子群优化与BP混合算法的神经网络学习方法。该方法在网络的训练过程中,同时利用粒子群算法与BP算法进行最优网络权值的搜索,从而既充分利用了粒子群算法的全局搜索性又较好地保持了BP算法本身的反向传播特点。将该混合学习算法应用于复杂函数的拟合仿真,并与标准BP算法以及传统的粒子群优化BP神经网络学习算法进行比较。实验结果表明所提的混合学习算法具有较高的收敛精度,且收敛速度更快。 相似文献
12.
Neural Computing and Applications - The gear cracks of gear box are one of most common failure forms affecting gear shaft drive. It has become significant for practice and economy to diagnose the... 相似文献
13.
自适应变异粒子群算法具备了基本粒子群算法和遗传算法优点,用此算法寻找BP网络较好的网络权值和阈值,使得BP网络的全局误差最小化,不仅可以克服基本BP算法收敛速度慢和易陷入局部极值的局限,而且模型的精度高。仿真实验结果表明,本算法与传统的分类方法相比,具有更高的正确率.验证了自适应变异粒子群算法优化BP神经网络是一种有效的分类方法。 相似文献
14.
15.
16.
基于粒子群优化的深度神经网络分类算法 总被引:1,自引:0,他引:1
针对神经网络分类算法中节点函数不可导,分类精度不够高等问题,提出了一种基于粒子群优化(PSO)算法的深度神经网络分类算法.使用深度学习中的自动编码机,结合PSO算法优化权值,利用自动编码机对输入样本数据进行编解码,为提高网络分类精度,以编码机本身的误差函数和Softmax分类器的代价函数加权求和共同作为PSO算法的评价函数,使编码后的数据更加适应分类器.实验结果证明:与其他传统的神经网络相比,在邮件分类问题上,此分类算法有更高的分类精度. 相似文献
17.
18.
针对PM2.5预测的非线性不确定特点,提出基于改进粒子群优化BP神经网络的空气PM2.5浓度预测模型.引入混沌映射和对立学习改进粒子群算法;引入对立学习提高初始解的质量;引入混沌Tent映射改进粒子随机搜索,避免局部最优;引入自适应惯性权重均衡局部开发和全局勘探能力.利用改进粒子群对BP神经网络权值和阈值进行迭代寻优,基于最优参数BP神经网络做PM 2.5预测,有效避免神经网络训练时陷入局部最优,提升收敛速度.选取某市某时段的PM2.5日均浓度数据进行实验分析,结果表明IPSO-BP预测准确度更高,收敛速度更快. 相似文献
19.
为了提高语音端点检测率,提出一种改进动量粒子群优化神经网络的语音端点检测算法(WA-IMPSO-BP)。利用小波分析提取语音信号的特征量,将特征向量作为BP神经网络输入进行学习,并采用粒子群算法优化BP神经网络参数,建立语音端检测模型,在Matlab环境下进行仿真实验。仿真结果表明,WA-IMPSO-BP提高了语音端点检测率,有效降低了虚检率和漏检率,表示WA-IMPSO-BP是一种检测率高,抗噪性能强的语音检测算法。 相似文献
20.
为了更准确地描述有记忆效应的射频功放特性,提出了一种改进的简化粒子群优化(PSO)算法,并结合自适应模糊推理系统(ANFIS)建立模糊神经网络功放模型.改进的简化PSO算法仅保留粒子的位置项,加入了随机的个体最优候选解,由粒子的当前位置、个体最优解、全局最优解和随机的个体最优候选解共同决定其位置项;采用线性递减惯性权重,并利用异步变化的动态学习因子,且新颖地引入拉普拉斯系数,从而增加了种群多样性,加快了收敛速度,避免陷入局部最优.由模型仿真对比可知,该方法建立的功放模型结构简单、收敛快、误差小、精度高,从而验证了建模方法的有效性和可靠性. 相似文献