首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
随着我国《生活饮用水卫生标准》(GB 5749-2022)的实施,城市供水水质进一步提高的同时给部分仅使用常规处理工艺水厂的带来了挑战。为确保2-甲基异莰醇(2-MIB)稳定达标,常规处理工艺自来水厂将使用投加粉末活性炭的方法达到去除的目的。通过系统性研究实际生产中粉末活性炭的投加量、吸附时间、投加点对2-MIB去除的影响,结合出厂水水质、运行管理效率和经济性评价,确定应用粉末活性炭去除饮用水中2-MIB是可行的技术。结果表明,当原水2-MIB浓度为(61.2±3.70) ng/L时,在0~330 min吸附时间内,随着吸附时间延长,投加5~40 mg/L的粉末活性炭2-MIB的去除率增加;当吸附时间为300 min时,投加40 mg/L的粉末活性炭能将2-MIB浓度为(61.05±2.24) ng/L的原水降至低于10 ng/L;多级投加粉末活性炭对2-MIB去除效果明显优于原水单级投加,原水2-MIB浓度为(63.85±22.13) ng/L时,多级投加50 mg/L粉末活性炭2-MIB去除率(85.1±2.63)%。投加30 mg/L的粉末活性炭能将原水中高锰酸盐指数平均去除率从...  相似文献   

2.
刘利 《给水排水》2012,(Z2):14-18
采用静态模拟试验,研究了粉末活性炭应急投加技术中存在的碳种优选、最佳投加量和投加点确定等问题。结果表明,投加粉末活性炭作为头部原水水质变化的应急处理手段是完全可行的,能够保证给水厂的供水安全;PICA煤质碳为粉末活性炭应急处理原水的最佳碳种;结合UV254、CODMn和色度三项指标以及给水厂的实际情况得出,吸水井处为粉末活性炭应急投加的最佳点;在水质急剧变化时,粉末活性炭投量为20~30mg/L是适宜的,其中UV254的去除率净增加20%左右,CODMn的去除率净提高10%左右;当水质极端变差时可考虑将粉末活性炭的投加量增加至50mg/L。  相似文献   

3.
采用高锰酸钾和粉末活性炭联用工艺预处理的微污染原水,将高锰酸钾和粉末活性炭平均投加量分别从0.49 mg/L和4.6 mg/L提高至0.61 mg/L和5.2 mg/L后,各水厂出厂水浊度降低11.4%~26.1%,出厂水CODMn去除率提高6.8%~12.4%,臭味也明显有所改善。同时混凝剂和氯气用量分别下降8.5%~38.5%、12.7%~28.4%。对生产数据的分析认为,适当提高高锰酸钾和粉末活性炭的投加量有利于改善出厂水水质并能降低混凝剂和氯气用量。  相似文献   

4.
针对株洲市自来水公司湘江水源水和出厂水水质 ,进行强化混凝试验研究。试验表明 ,采用高锰酸钾 粉末活性炭联用组合工艺 ,对老水厂改造 ,提高除污去浊效率 ,确实是一种经济有效的手段。高锰酸钾作为强氧化剂 ,降解有机物效果较理想 ,粉末活性炭对水中的小分子有机物有很好的吸附作用 ,有利于去色除味。两者组合同时用于常规净水工艺流程 ,使之协同作用 ,效果更为显著。当原水CODMn为 4 0 3mg/L ,浊度为 30NTU ,UV2 54为0 33,NH3 -N为 0 4 6mg/L时 ,投加聚合氯化铝 2 0mg/L ,沉淀水相应水质参数分别为 :2 72mg/L ,1 86NTU ,0 0 88,0 2 8mg/L ,去除率分别为 32 5 % ,93 8% ,73 3% ,39 1% ;采用高锰酸钾 粉末活性炭联用组合工艺 ,高锰酸钾投加量0 2mg/L ,聚合氯化铝投加量 2 0mg/L ,粉末活性炭投加量10mg/L ,沉淀水相应水质参数分别为 :1 87mg/L ,1 4 3NTU ,0 0 3,0 2 0mg/L ,而滤后水相应水质参数为 :0 93mg/L ,0 81NTU ,0 0 3,0 19mg/L ,去除率为 76 5 % ,97 3% ,90 9% ,5 8 7%。强化混凝正交试验表明 :助凝剂、混凝剂投加顺序即投加点以及高锰酸钾投加量 ,对UV2 54,NH3 -N及浊度去除均有显著影响。高锰酸钾与聚合氯化铝同时投加 ,30s后再投加粉末活性炭 ,效果最好。  相似文献   

5.
南水北调的应急工程是从河北四水库调水进京,为了保证净水厂运行稳定,进行了适应性研究,并采用层次优化法对中试工艺进行选优。结果表明:第九水厂工艺运行方案为采用粉末活性炭预处理(20mg/L),混凝剂投加量为20~25mg/L;当原水藻类较高时可采用"氯+粉末活性炭"联合预处理方式;在剑水蚤数量较多时,建议砂滤池和炭池的反冲洗水不回收。第三水厂、田村山水厂采用混凝—沉淀—过滤—O3—炭池工艺,主臭氧投加量为0.5~1.5mg/L,混凝剂投加量为20~25mg/L。剑水蚤数量较少时,混凝沉淀能够将其去除,或通过主臭氧将剑水蚤杀死去除。在调水过程中,应跟踪原水MIB的变化,并加强活性炭出水的臭味检测,适时调整工艺运行参数。  相似文献   

6.
为评估双氧水在给水厂深度处理改造中的应用潜力,依托中试装置分析了臭氧/双氧水/活性炭工艺中氧化剂投加量和投加比对工艺处理效能的影响,结果表明:与臭氧/活性炭工艺相比,臭氧/双氧水/活性炭工艺对中试装置进水中的CODMn、土臭素、2-MIB、甲砜霉素和氟甲砜霉素均有更高的去除率,且对于水中富里酸类物质、溶解性微生物代谢产物及自生源组分的削减幅度更大,试验条件下的最优工况为O3投加量1.0 mg/L,O3/H2O2质量比2∶1。在水厂常规的臭氧投加规模下(0.5~1.5 mg/L),臭氧/双氧水/活性炭工艺出水基本没有双氧水残留的问题。  相似文献   

7.
周建平  许龙  芮旻  沈飚  富良 《给水排水》2012,38(1):17-20
P市地表原水受到有机物污染,水中CODMn经常高达10mg/L以上,为此,在G水厂的扩建工程中,采用了两级臭氧—生物活性炭深度处理工艺,以保证出水水质安全。水厂运行结果表明,在活性炭吸附饱和后,一级炭池出水CODMn仍有3~5mg/L,需二级臭氧—生物活性炭处理才能使出厂水CODMn小于3mg/L。当前后臭氧分级投加比例为3∶2时,有机物的去除率最高。  相似文献   

8.
针对饮用水中二甲基异莰醇(2-MIB)污染和UV/H_2O_2高级氧化工艺H_2O_2残留问题,构建了UV/H_2O_2/Cl_2组合工艺,并以加标滤后水为原水开展了相关中试研究。基于响应曲面法对UV/H_2O_2工艺去除2-MIB进行参数优化,在此基础上对出水残留H_2O_2采用加氯中和处理,调整NaClO投加量以保证出水符合出厂水余氯要求。最终确定UV/H_2O_2/Cl_2组合工艺运行的最优工况为:当2-MIB为275ng/L时,UV为350mJ/cm~2,H_2O_2投加量6mg/L,NaClO投加量7.5mg/L,在确定的最优工况下连续稳定运行组合工艺,对工艺出水进行检测,结果表明UV/H_2O_2/Cl_2组合工艺对2-MIB去除率达到96.95%,出水余氯值0.4~0.5 mg/L,对TOC、UV_(254)去除率分别达到15.59%、65.71%,能够氧化去除水中大分子有机物,对色氨酸等5种溶解性有机物去除效果良好,且不会带来消毒副产物超标和生物毒性问题,最终出水符合《生活饮用水卫生标准》(GB 5749-2006)对水质的要求。  相似文献   

9.
徐玲 《山东水利》2012,(9):53-54
常规水处理工艺处理高藻高有机污染原水难度大,淄博引黄供水厂通过复合高锰酸钾与粉末活性炭技术强化常规水处理工艺进行试验分析和生产验证,研究高锰酸钾与粉末活性炭联用对引黄高藻水库原水的除藻、除有机物的处理效果,为水厂实施原水污染应急方案和技术措施,完善常规水处理工艺探索新的途径。为提高水质,自2006年来一直持续投加高锰酸钾与粉末活性炭,供水出浊控制在0.2NTU以下。  相似文献   

10.
太湖蓝藻暴发应急处理方案研究   总被引:2,自引:1,他引:1  
总结了课题组针对近期太湖蓝藻暴发的应急处理技术所做的一些研究工作.研究结果表明,此次水体中致臭物质为烯烃类等极性亲水性有机物质,普通活性炭对其吸附效果较差;选择的特种粉末活性炭可以有效吸附水中的致臭物质,20 mg/L的特种活性炭可以有效去除水的臭味、微囊藻毒素,而且具有明显的助凝作用;高锰酸钾预氧化在较高投量时对水的臭味有一定的改善作用,但存在着氧化的中间产物性质难以确定、出水锰离子可能超标等问题,需投加粉末活性炭和粉末沸石来保证出水水质.臭氧氧化是一种有效的除臭技术,可以作为以富营养化水体为水源的自来水厂的储备技术.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号