首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome b2 is synthesized as a precursor in the cytoplasm and imported to the intermembrane space of yeast mitochondria. We show here that the precursor contains a tightly folded heme-binding domain and that translocation of this domain across the outer membrane requires ATP. Surprisingly, it is ATP in the mitochondrial matrix rather than external ATP that drives import of the heme-binding domain. When the folded structure of the heme-binding domain is disrupted by mutation or by urea denaturation, import and correct processing take place in ATP-depleted mitochondria. These results indicate that (1) cytochrome b2 reaches the intermembrane space without completely crossing the inner membrane, and (2) some precursors fold outside the mitochondria but remain translocation-competent, and import of these precursors in vitro does not require ATP-dependent cytosolic chaperone proteins.  相似文献   

2.
Protein import into mitochondria involves several components of the mitochondrial outer and inner membranes as well as molecular chaperones located inside mitochondria. Here, we have investigated the effect of sulfhydryl group reagents on import of the in vitro transcribed/translated precursor of the F1 beta subunit of the ATP synthase (pF1 beta) into Solanum tuberosum mitochondria. We have used a reducing agent, dithiothreitol (DTT), a membrane-permeant alkylating agent, N-ethylmaleimide (NEM), a non-permeant alkylating agent, 3-(N-maleimidopropionyl)biocytin (MPB), an SH-group specific agent and cross-linker 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) as well as an oxidizing cross-linker, copper sulfate. DTT stimulated the mitochondrial protein import, whereas NEM, MPB, DTNB and Cu2+ were inhibitory. Inhibition by Cu2+ could be reversed by addition of DTT. The efficiency of inhibition was higher in energized mitochondrial than in non-energized. We have dissected the effect of the SH-group reagents on binding, unfolding and transport of the precursor into mitochondria. Our results demonstrated that the inhibitory effect of NEM, DTNB and Cu2+ on the efficiency of import was not due to the interaction of the SH-group reagents with import receptors. Modification of pF1 beta with NEM prior to the import resulted in stimulation of import, whereas DTNB and Cu2+ were inhibitory. NEM, MPB, DTNB and Cu2+ inhibited import of the NEM-modified pF1 beta into intact mitochondria. Import of pF1 beta through a receptor-independent bypass-route as well as import into mitoplasts were sensitive to DTT, NEM, MPB, DTNB and Cu2+ in a similar manner as import into mitochondria. As MPB does not cross the inner membrane, these results indicated that redox and conformational status of SH groups located on the outer surface of the inner mitochondrial membrane were essential for protein import.  相似文献   

3.
Most mitochondrial proteins are nuclear encoded, synthesized on cytosolic ribosomes, and imported into the mitochondria. We have identified and characterized a 309 amino acid human protein with a molecular weight of 34 kDa that functions as a subunit of the translocase for the import of such proteins. hTom34 (34-kDa Translocase of the Outer Mitochondrial Membrane) is displayed on the surface of mitochondria and is resistant to extraction under alkaline conditions. Antibodies raised against hTom34 specifically inhibit in vitro import of the mitochondrial precursor protein preornithine transcarbamylase into mitochondria isolated from rat liver. Based on trypsin digestion experiments, the receptor has a large (27 kDa) C-terminal domain exposed to the cytosol. This novel component of the protein import machinery possesses a 62 residue motif conserved with the Tom70 family of mitochondrial receptors but otherwise appears to have no counterpart so far characterized in the mitochondria of any other species.  相似文献   

4.
Fibroblasts derived from patients with late infantile neuronal ceroid lipofucsinosis (NCL) and from a mouse model of NCL are similar to cells in intact animals in that they accumulate subunit 9 of mitochondrial F1F0-ATP synthase (F-ATPase) (Tanner, A., Dice, J.F., Cell Biol. Int. 19 (1995) 71-75). We now report no differences in the synthetic rates of F-ATPase subunit 9 in such affected cells when compared to control cells. However, the degradation rates of F-ATPase subunit 9 are reduced in both the affected human and mouse cells. This reduced degradation applies only to subunit 9 and the homologous vacuolar ATPase subunit among five distinct, reproducible proteolipid bands analyzed. Approximately 15% of newly synthesized F-ATPase subunit 9 is rapidly degraded in control cells, but this rapidly degraded component is absent in both the human and mouse NCL fibroblasts. At confluence, when the accumulated F-ATPase subunit 9 transiently disappears from human NCL fibroblasts, there is an increased degradation of all proteolipids. The pathway of degradation that is enhanced at confluence is likely to correspond to lysosomal macroautophagy. We confirmed that lysosomes were able to degrade F-ATPase subunit 9 after endocytosis of radiolabeled mitochondria. Human NCL fibroblasts were less active than control cells in this lysosomal degradation of endocytosed F-ATPase subunit 9. However, this difference was not specific for F-ATPase subunit 9 since it also applied to total endocytosed mitochondrial protein. We conclude that degradation of F-ATPase subunit 9 can occur by multiple pathways and that a mitochondrial pathway of proteolysis is defective in the late infantile human and mouse forms of NCL.  相似文献   

5.
The association between ribosomes and the pore proteins at the endoplasmic reticulum membrane is important to co-translational translocation. To determine if a similar association occurs between the ribosome and mitochondrial membrane protein(s) during protein import in higher eukaryotes, we examined ribosome-mitochondria binding. By using spectral measurements, analysis of mitochondrial associated RNA, and electron microscopy, we demonstrated that ribosomes stably bind to purified rat liver mitochondria in vitro. Binding of ribosomes to mitochondria was markedly reduced by GTP and nearly abolished by the non-hydrolyzable GTP analogue, guanosine-5'-[thio]-triphosphate (GTPgammaS), but was only modestly reduced by GDP or ATP and unaffected by CTP. The initial rate of GTP hydrolysis by mitochondria was increased by ribosomes, whereas the rate of ATP hydrolysis by mitochondria was not affected. Ribosomes programmed with mRNA for 92 amino acids of the N terminus of mitochondrial malate dehydrogenase bound to mitochondria, but unlike unprogrammed rat liver ribosomes, neither GTP nor GDP disrupted binding; however, GTPgammaS did. These data show that receptors specific for ribosomes are present on the mitochondrial membrane, and a GTP-dependent process mediates this binding. The presence of a nascent chain alters these binding characteristics. These findings support the hypothesis that a co-translational translocation pathway exists for import of proteins into mitochondria.  相似文献   

6.
MOM22 is a component of the protein import complex of the mitochondrial outer membrane of Neurospora crassa. Using the newly developed procedure of 'sheltered disruption', we created a heterokaryotic strain harboring two nuclei, one with a null allele of the mom-22 gene and the other with a wild-type allele. Homokaryons bearing the mom-22 disruption could not be isolated, suggesting that mom-22 is an essential gene. The mutant nucleus can be forced to predominate in the heterokaryon through the use of specific nutritional and inhibitor resistance markers. Cultivation of the heterokaryon under conditions favoring the mutant nucleus resulted in selective depletion of MOM22. MOM22-depleted cells did not grow and contained mitochondria with an altered morphology and protein composition. Protein import into isolated, MOM22-depleted mitochondria was abolished for most precursor proteins destined for all subcompartments. In contrast, precursors of MOM19, MOM22 and MOM72 became inserted normally into the outer membrane, defining a novel MOM22-independent import pathway which remained intact in mutant mitochondria. Furthermore, the specific binding of the ADP/ATP carrier to the outer membrane was unaffected, but subsequent transport across the outer membrane did not occur. Our data show that MOM22 is an essential component of Neurospora cells specifically required for the biogenesis of mitochondria.  相似文献   

7.
We have isolated the F0F1-ATP synthase complex from oligomycin-sensitive mitochondria of the green alga Chlamydomonas reinhardtii. A pure and active ATP synthase was obtained by means of sonication, extraction with dodecyl maltoside and ion exchange and gel permeation chromatography in the presence of glycerol, DTT, ATP and PMSF [corrected]. The enzyme consists of 14 subunits as judged by SDS-PAGE. A cDNA clone encoding the ATP synthase alpha subunit has been sequenced. The deduced protein sequence contains a presequence of 45 amino acids which is not present in the mature protein. The mature protein is 58-70% identical to corresponding mitochondrial proteins from other organisms. In contrast to the ATP synthase beta subunit from C. reinhardtii (Franzen and Falk, Plant Mol Biol 19 (1992) 771-780), the protein does not have a C-terminal extension. However, the N-terminal domain of the mature protein is 15-18 residues longer than in ATP synthase alpha subunits from other organisms. Southern blot analysis indicates that the protein is encoded by a single-copy gene.  相似文献   

8.
The essential yeast gene MPI1 encodes a mitochondrial membrane protein that is possibly involved in protein import into the organelle (A. C. Maarse, J. Blom, L. A. Grivell, and M. Meijer, EMBO J. 11:3619-3628, 1992). For this report, we determined the submitochondrial location of the MPI1 gene product and investigated whether it plays a direct role in the translocation of preproteins. By fractionation of mitochondria, the mature protein of 44 kDa was localized to the mitochondrial inner membrane and therefore termed MIM44. Import of the precursor of MIM44 required a membrane potential across the inner membrane and involved proteolytic processing of the precursor. A preprotein in transit across the mitochondrial membranes was cross-linked to MIM44, whereas preproteins arrested on the mitochondrial surface or fully imported proteins were not cross-linked. When preproteins were arrested at two distinct stages of translocation across the inner membrane, only preproteins at an early stage of translocation could be cross-linked to MIM44. Moreover, solubilized MIM44 was found to interact with in vitro-synthesized preproteins. We conclude that MIM44 is a component of the mitochondrial inner membrane import machinery and interacts with preproteins in an early step of translocation.  相似文献   

9.
Protein import into the innermost compartment of mitochondria (the matrix) requires a membrane potential (delta psi) across the inner membrane, as well as ATP-dependent interactions with chaperones in the matrix and cytosol. The role of nucleoside triphosphates other than ATP during import into the matrix, however, remains to be determined. Import of urea-denatured precursors does not require cytosolic chaperones. We have therefore used a purified and urea-denatured preprotein in our import assays to bypass the requirement of external ATP. Using this modified system, we demonstrate that GTP stimulates protein import into the matrix; the stimulatory effect is directly mediated by GTP hydrolysis and does not result from conversion of GTP to ATP. Both external GTP and matrix ATP are necessary; neither one can substitute for the other if efficient import is to be achieved. These results suggest a "push-pull" mechanism of import, which may be common to other post-translational translocation pathways.  相似文献   

10.
11.
Mitochondrial precursor proteins made in the cytosol bind to a hetero-oligomeric protein import receptor on the mitochondrial surface and then pass through the translocation channel across the outer membrane. This translocation step is accelerated by an acidic domain of the receptor subunit Mas22p, which protrudes into the intermembrane space. This 'trans' domain of Mas22p specifically binds functional mitochondrial targeting peptides with a Kd of < 1 microM and is required to anchor the N-terminal targeting sequence of a translocation-arrested precursor in the intermembrane space. If this Mas22p domain is deleted, respiration-driven growth of the cells is compromised and import of different precursors into isolated mitochondria is inhibited 3- to 8-fold. Binding of precursors to the mitochondrial surface appears to be mediated by cytosolically exposed acidic domains of the receptor subunits Mas20p and Mas22p. Translocation of a precursor across the outer membrane thus appears to involve sequential binding of the precursor's basic and amphiphilic targeting signal to acidic receptor domains on both sides of the membrane.  相似文献   

12.
The ADP/ATP carrier (AAC) of the mitochondrial inner membrane is synthesized in the cytosol without a cleavable presequence. The preprotein preferentially binds to the mitochondrial surface receptor Tom70 and joins the import pathway of presequence-carrying preproteins at the cis side of the outer membrane. Little is known about the translocation of the AAC across the outer membrane and where its import route separates from that of cleavable preproteins. Here we have characterized a translocation intermediate of AAC during transfer across the outer membrane. The major portion of the preprotein is exposed to the intermembrane space, while a short segment is still accessible to externally added protease. This intermediate can be quantitatively chased to the fully imported form in the inner membrane. Its accumulation depends on Tom7, but not on the intermembrane space domain of Tom22 in contrast to cleavable preproteins. Moreover, opening of the intermembrane space inhibits the import of AAC, but not that of cleavable preproteins into mitoplasts. We conclude that the import route of AAC diverges from the general import pathway of cleavable preproteins already at the trans side of the outer membrane.  相似文献   

13.
The Tim23 protein is an essential inner membrane (IM) component of the yeast mitochondrial protein import pathway. Tim23p does not carry an amino-terminal presequence; therefore, the targeting information resides within the mature protein. Tim23p is anchored in the IM via four transmembrane segments and has two positively charged loops facing the matrix. To identify the import signal for Tim23p, we have constructed several altered versions of the Tim23 protein and examined their function and import in yeast cells, as well as their import into isolated mitochondria. We replaced the positively charged amino acids in one or both loops with alanine residues and found that the positive charges are not required for import into mitochondria, but at least one positively charged loop is required for insertion into the IM. Furthermore, we find that the signal to target Tim23p to mitochondria is carried in at least two of the hydrophobic transmembrane segments. Our results suggest that Tim23p contains separate import signals: hydrophobic segments for targeting Tim23p to mitochondria, and positively charged loops for insertion into the IM. We therefore propose that Tim23p is imported into mitochondria in at least two distinct steps.  相似文献   

14.
The alpha subunit of the mitochondrial ATP synthase is part of the F1 enzymatic complex known to bind ADP, phosphate and ATP and is at the heart of the mitochondrial energy-producing mechanism. The mouse embryonal carcinoma variant of the alpha subunit cDNA was cloned and the complete nucleotide sequences of two different lengths of clones were determined. Two distinct polyadenylation sites in the cDNA sequence were detected and two sizes of mRNAs were confirmed by Northern blot hybridization. Two putative ATP-binding motifs - A and B, have been hypothesized for this enzyme based on previous NMR work on another ATP-binding enzyme, adenylate kinase. We have constructed four deletion mutants of the alpha subunit of the mouse F1-ATP synthase to examine the putative role of these domains. The resulting recombinant proteins were expressed and purified. Functional studies with the immobilized mutants proved the significance of both sites for ATP binding.  相似文献   

15.
The import of proteins into mitochondria is an intricate process comprised of multiple steps. The first step involves the sorting of cytosolically synthesized precursor proteins to the mitochondrial surface. There precursor proteins are recognized by specific receptors which deliver them to the general import site present in the outer membrane. The second stage of import involves a series of complex intraorganelle sorting events which results in the delivery of the proteins to one of the four possible submitochondrial destinations, namely the outer and inner membranes, the matrix and intermembrane space. Here in this review, we discuss the current knowledge on these intramitochondrial sorting events. We especially focus on targeting of proteins to the intermembrane space. Sorting to the intermembrane space represents a particularly interesting situation, as at least three separate targeting pathways to this subcompartment are known to exist.  相似文献   

16.
TOM22 is an essential mitochondrial outer membrane protein required for the import of precursor proteins into the organelles. The amino-terminal 84 amino acids of TOM22 extend into the cytosol and include 19 negatively and 6 positively charged residues. This region of the protein is thought to interact with positively charged presequences on mitochondrial preproteins, presumably via electrostatic interactions. We constructed a series of mutant derivatives of TOM22 in which 2 to 15 of the negatively charged residues in the cytosolic domain were changed to their corresponding amido forms. The mutant constructs were transformed into a sheltered Neurospora crassa heterokaryon bearing a tom22::hygromycin R disruption in one nucleus. All constructs restored viability to the disruption-carrying nucleus and gave rise to homokaryotic strains containing mutant tom22 alleles. Isolated mitochondria from three representative mutant strains, including the mutant carrying 15 neutralized residues (strain 861), imported precursor proteins at efficiencies comparable to those for wild-type organelles. Precursor binding studies with mitochondrial outer membrane vesicles from several of the mutant strains, including strain 861, revealed only slight differences from binding to wild-type vesicles. Deletion mutants lacking portions of the negatively charged region of TOM22 can also restore viability to the disruption-containing nucleus, but mutants lacking the entire region cannot. Taken together, these data suggest that an abundance of negative charges in the cytosolic domain of TOM22 is not essential for the binding or import of mitochondrial precursor proteins; however, other features in the domain are required.  相似文献   

17.
Cross-linking studies on the Escherichia coli F0F1-ATP synthase indicated a site of interaction involving gamma and epsilon subunits in F1 and subunit c in F0 (Watts, S. D., Tang, C., and Capaldi, R. A. (1996) J. Biol. Chem. 271, 28341-28347). To assess the function of these interactions, we introduced random mutations in this region of the gamma subunit (gamma194-213). One mutation, gammaGlu-208 to Lys (gammaE208K), caused a temperature-sensitive defect in oxidative phosphorylation-dependent growth. ATP hydrolytic rates of the gammaE208K F0F1 enzyme became increasingly uncoupled from H+ pumping above 28 degreesC. In contrast, Arrhenius plot of steady-state ATP hydrolysis of the mutant enzyme was linear from 20 to 50 degreesC. Analysis of this plot revealed a significant increase in the activation energy of the catalytic transition state to a value very similar to soluble, epsilon subunit-inhibited F1 and suggested that the mutation blocked normal release of epsilon inhibition of ATP hydrolytic activity upon binding of F1 to F0. The difference in temperature dependence suggested that the gammaE208K mutation perturbed release of inhibition via a different mechanism than it did energy coupling. Suppressor mutations in the polar loop of subunit c restored ATP-dependent H+ pumping and transition state thermodynamic parameters close to wild-type values indicating that interactions between gamma and c subunits mediate release of epsilon inhibition and communication of coupling information.  相似文献   

18.
The role of HSDJ, a human homolog of bacterial DnaJ and yeast YDJ1p/MAS5, in mitochondrial protein import was examined. Recombinant HSDJ was purified and an antibody was prepared. HSDJ mRNA was heat-induced in cultured cells. In pulse-labeling and chase experiments using COS-7 cells, the endogenous HSDJ homolog was prenylated. Transiently expressed HSDJ was also prenylated, whereas its mutant C394S in which cysteine of the "CaaX box" was mutated to serine, was not. HSDJ, but not C394S, synthesized in rabbit reticulocyte lysate was farnesylated. The HSDJ antibody inhibited import of ornithine transcarbamylase precursor (pOTC) into isolated mitochondria when added prior to pOTC synthesis, but not when added prior to import assay. In transient expression of pOTC in COS-7 cells, pOTC was synthesized and processed to the mature form with an apparent half-life of 2-3 min. Coexpression of HSDJ or C394S resulted in slight retardation of the pOTC processing. These results indicate that HSDJ is involved in an early step(s) of protein import into mitochondria.  相似文献   

19.
Precursor proteins made in the cytoplasm must be in an unfolded conformation during import into mitochondria. Some precursor proteins have tightly folded domains but are imported faster than they unfold spontaneously, implying that mitochondria can unfold proteins. We measured the import rates of artificial precursors containing presequences of varying length fused to either mouse dihydrofolate reductase or bacterial barnase, and found that unfolding of a precursor at the mitochondrial surface is dramatically accelerated when its presequence is long enough to span both membranes and to interact with mhsp70 in the mitochondrial matrix. If the presequence is too short, import is slow but can be strongly accelerated by urea-induced unfolding, suggesting that import of these 'short' precursors is limited by spontaneous unfolding at the mitochondrial surface. With precursors that have sufficiently long presequences, unfolding by the inner membrane import machinery can be orders of magnitude faster than spontaneous unfolding, suggesting that mhsp70 can act as an ATP-driven force-generating motor during protein import.  相似文献   

20.
An in vitro import system was used to characterize the mechanism of import of phospholipid hydroperoxide glutathione peroxidase (PHGPx) into mitochondria. Mitochondria were isolated from rat liver and incubated at 25 degrees C with [35S]methionine-labeled products of the in vitro translation of mRNA that encoded 23-kDa and 20-kDa PHGPx. 23-kDa PHGPx was imported into mitochondria in a time-dependent manner and was processed to yield the 20-kDa form of PHGPx. The 20-kDa form of PHGPx, without a leader sequence, associated weakly with mitochondria but was not imported. An analysis with an uncoupler of oxidative phosphorylation showed that a membrane potential in the mitochondria was also required for the import of PHGPx. It appears, therefore, that the leader sequence in the precursor to PHGPx is the signal for import into the mitochondria. This is the first report to indicate that the precursor to PHGPx is imported into the mitochondria via the action of a leader sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号