首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aiming at actual condition of poor effect of hole sealing for the reason of poor cement paste fluidity in the process of coal mine gas drainage, by adding a water reducing agent, cement paste for hole sealing was produced. The changes of initial distribution, weighted average values and total relaxation signal intensity of transverse relaxation time (T2) of water in pure cement paste and water reducing agent added cement paste were studied with low field proton nuclear magnetic resonance (NMR). The results show that there are four peaks in T2 distribution curves of cement paste: the first peak is related to the bound water in flocculation, the second and the third peaks are related to the water in flocculation, water reducing agent makes it extending towards the long relaxation time, increasing its liquidity, and the fourth peak is related to the free water. By using weighted average values of T2 and total relaxation signal intensity, hydration process of cement pastes could be roughly divided into four stages: the initial period, reaction period, accelerated period and steady period. By analyzing the periods, it makes sure that the grouting process should be completed in the reaction period in the site, and the drainage process should be started in the steady period. The results have great guiding significance to the hole sealing and methane drainage.  相似文献   

2.
Development of microstructure of early cement paste (0–6 h) was investigated with 1H low-field NMR. It was found that T 2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks were ‘long component’ and ‘short component’. Separation degree of two peaks was a sign of exchange of water within flocculation and outside flocculation. Factors such as water cement ratio, specific surface area and dosage of superplasticizer had influences on the separation degree: the separation degree increased with the water cement ratio; the separation degree of cement paste prepared with cement with a high specific surface area was zero; dosage of superplasticizer will decrease separation degree. Results also suggested that T 2 distribution gradually moved to the left and T 2 of long component and initial fluidity were linearly correlated.  相似文献   

3.
Yield stress development of cement paste is potentially governed by percolation of 3-dimensional links formed by hydration products on the surface of the particles. It rises steadily at a gradual rate before a sudden increase in rate of growth. In this study, a method was proposed to predict the yield stress development based on the diameter of spread(D) of mini slump cone test and gradient from electrical resistivity measurement(K_m). To evaluate the significance of(D) and(K_m) in terms of yield stress, they were quantitatively compared to the initial yield stress(τ_0) and rate of yield stress growth(K) obtained from a rheometer. A mathematical relationship between the yield stress of cement paste, diameter of spread and electrical resistivity characteristic gradient was developed. The equation developed can be used as an alternative method to estimate yield stress of cement paste.  相似文献   

4.
We investigated the temperature dependency of the dynamic mechanical properties of cement asphalt paste by the dynamic mechanical thermal analysis(DMTA) method. The experimental results show that the dynamic mechanical properties of cement asphalt pastes are sensitive to temperature due to the inclusion of asphalt, and may go through different states within a temperature range of-40 ℃ to 60 ℃, which is different from that of pure cement and asphalt. As the temperature of the cement asphalt paste increases, a considerable change of dynamic mechanical properties, including storage modulus(E'), loss modulus(E') and loss factor(tand) is observed. Moreover, the influence of asphalt to cement(A/C) ratio on the temperature sensitivity of the dynamic mechanical properties of cement asphalt composites was investigated. The temperature dependency of cement asphalt composites is ascribed to the temperature dependency of the asphalt and its interaction with cement paste. A simple fractional model is proposed to describe the viscoelastic behavior of cement asphalt composites.  相似文献   

5.
Three different curing temperatures(20 ℃, 40 ℃, and 60 ℃) were set, so that the nonevaporable water(w_n) contents of plain cement pastes cured at these three temperatures were measured to determine the hydration degree of cement. Tests were carried out to compare the pore structure and strength of cement paste, as well as the strength and permeability of concrete under different temperature curing conditions when their cements were cured to the same hydration degree. The experimental results show that either at a relatively low hydration degree(w_n=15%) or high hydration degree(w_n=16.5%), elevated curing temperature has little influence on the hydration products of cement paste, while it has a negative influence on the pore structure and compressive strength of cement paste. However, this negative effect is weaker at high hydration degree. The large capillary pore(100 nm) volumes of cement pastes remain almost the same at high hydration degree, regardless of curing temperatures. As for the concrete, elevated curing temperature also has negative influence on its compressive strength development, at both low hydration degree and high hydration degree. And this negative effect is stronger than that on cement paste's compressive strength at the same hydration degree. On the whole, elevated curing temperature has little influence on the resistance of concrete to chloride ion penetration.  相似文献   

6.
Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes(Ф68 mm×32 mm,Ф59 mm×29.5 mm and Ф32 mm×16 mm)to study the influence of specimen size on the compression behavior of cement-based materials under high strain rates.The static tests were applied using a universalservo-hydraulic system,and the dynamic tests were applied by a spilt Hopkinson pressure bar(SHPB)system.The experimentalresults show that for mortar and paste specimens,the dynamic compressive strength is greater than the quasi-static one,and the dynamic compressive strength for specimens of large size is lower than those of smallsize.However,the dynamic increase factors(DIF)has an opposite trend.Obviously,both strain rate and size effect exist in mortar and paste.The test results were then analyzed using Weibull,Carpinteriand Ba?ant's size effect laws.A good agreement between these three laws and the test results was reached on the compressive strength.However,for the experimentalresults of paste and cement mortar,the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.  相似文献   

7.
The adsorption amount, ζ-potential of cement particles and fluidity of cement paste were tested to research the competitive adsorption between naphthalene superplasticizer(FDN) and STPP. The experimental results showed that the presence of STPP could significantly improve the fluidity of cement paste and reduce the fluidity loss with FDN. There existed a competitive adsorption between STPP and FDN. STPP and calcium ions formed complexes; they preferentially adsorbed onto surface of cement particles and preempt adsorption points of FDN; and it reduced adsorption amount of FDN. In the absence of STPP, saturation adsorption amount of FDN was 5.93 mg/g; but when the dosage of STPP was 0.1%, it reduced to 4.3 mg/g(about 72.5%). The adsorption amount of FDN was reduced by STPP, but ζ-potential of cement particles enhanced and fluidity of cement paste increased because of strong negative charge effect of the complexes. Adsorption of the complexes would delay Ca2+ into liquid and inhibit formation of active adsorption points. Then, content of FDN in liquid increased with the addition of STPP and ζ-potential of cement particles became stable. In this way, fluidity loss of cement paste reduced.  相似文献   

8.
This paper introduced a nondestructive testing method to evaluate the dynamic elastic modulus of cement paste. Moreover, the effect of water-cement ratio and conventional admixtures on the dynamic elastic modulus of cement paste was investigated, in which three kinds of admixtures were taken into account including viscosity modifying admixture (VMA), silica.fume (SF), and shrinkage-reducing admixture (SRA). The experimental results indicate that the dynamic elastic modulus of cement paste increases with decreasing water-cement ratio. The addition of SF increases the dynamic elastic modulus, however, the overdosage of VMA causes its reduction. SRA reduces the dynamic elastic modulus at early age without affecting it in later period. Finally, a multiscale micromechanics approach coupled with a hydration model CEMHYD3D and percolation theory is utilized to predict the elastic modulus of cement paste, and the predictive results by the model are in accordance with the experimental data.  相似文献   

9.
N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone(ITZ)between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself.For the convenience of applications,the mortar and concrete were considered as a four-phase spherical model,consisting of cement continuous phase,dispersed aggregates phase,interface transition zone and their homogenized effective medium phase.A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure.During calculation,the tortuosity(n)and constrictivity factors(Ds/D0)of pore in the hardened pastes are n≈3.2,Ds/D0=1.0×10-4respectively from the test data.The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results;The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.  相似文献   

10.
A computer-based model and method was presented to predict the time dependency of chloride diffusion coefficients in cement paste. The HYMOSTRUC3D model was applied to generate a 3D representative elementary volume (REV) of cement paste. In the simulation of microstructure, both of cement hydration and chloride binding were considered. With the simulated microstructure of cement paste, the finite element method was applied to simulate the diffusion process of chloride through the saturated cement paste. Based on the Fick’s first law, the chloride diffusion coefficient can be calculated. In this method, the influences of age and w/c ratio on the chloride diffusion coefficient were evaluated. The simulated chloride diffusivities with various w/c at different time were compared to experimental data obtained from the literature. The experimental results indicate that the chloride diffusion coefficient decreases with the increase of time and the decrease of w/c ratio. The trend of simulated relationship (diffusion coefficient vs time, diffusion coefficient vs w/c ratio) fits very well with the experiments.  相似文献   

11.
The rheologicalbehaviors of fresh cement paste with polycarboxylate superplasticizer were systematically investigated.Influentialfactors including superplasticizer to cement ratio(Sp/C),water to cement ratio(w/c),temperature,and time were discussed.Fresh cement pastes with Sp/Cs in the range of 0 to 2.0% and varied W/Cs from 0.25 to 0.5 were prepared and tested at 0,20 and 40 °C,respectively.Flowability and rheologicaltests on cement pastes were conducted to characterize the development of the rheologicalbehavior of fresh cement pastes over time.The exprimentalresults indicate that the initialflowability and flowability retention over shelf time increase with the growth in superplasticizer dosage due to the plasticizing effect and retardation effect of superplasticizer.Higher temperature usually leads to a sharper drop in initialflowability and flowability retention.However,for the cement paste with high Sp/C or w/c,the flowability is slightly affected by temperature.Yield stress and plastic viscosity show similar variation trends to the flowability under the abovementioned influentialfactors at low Sp/C.In the case of high Sp/C,yield stress and plastic viscosity start to decline over shelf time and the decreasing rate descends at elevated temperature.Moreover,two equations to roughly predict yield stress and plastic viscosity of the fresh cement pastes incorporating Sp/C,w/c,temperature and time are developed on the basis of the existing models,in which experimentalconstants can be extracted from a database created by the rheologicaltest results.  相似文献   

12.
In order to explore the serviceability and reinforcement of CaCO3 whisker in portland cement matrix, the durability of CaCO3 whisker and effect of low whisker content(0%–4.0%) on the working performance and mechanical properties of portland cement were investigated. The experimental results show that CaCO3 whiskers have a good stability and serviceability in cement, and should not significantly alter the rheological properties of the cement paste. The flexural and compressive strength of portland cement reinforced by CaCO3 whiskers was increased by 33.3% and 12.83%, respectively.  相似文献   

13.
The hydration characteristics and expansion impetus of three kinds of cement paste under free-and confined-curing conditions were investigated, which were respectively mixed with three different kinds of expansive agent at low W/B ratio. The results show that the hydration products of pure cement paste and paste mixed with expansive agent are same, but the amount of hydration products, un-hydrated C3S and C2S are obviously different at the same hydration age. At 3 d age, the amount of CH in pure cement paste is less than that of paste mixed with expansive agent, but it is reverse when at 28 d age. The amount of AFt at 3d and 28d age in pure cement paste is less than those of paste mixed with expansive agent. Regardless of under free- or confined-curing condition, the amount of ettringite produced varies little since 3d age. The joint effect of the tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore caused by the crystalloid ettringite is the cause of the volume expansion of cement paste, and the former effect is much greater than the latter. LU Lin-nu : Born in 1972 Funded by 973 High-tech Project of China (No. 2001CB610704-2) and the Natural Science Foundation of Hubei Province(No. 2002AB075)  相似文献   

14.
应用XRD、TG-DTA和温度测量等方法,研究了低水胶比条件下普硅水泥和膨胀水泥的水化特点。结果发现,膨胀水泥水化各龄期中AFt的含量和CH的早期含量明显增加,水化后期CH量则与普硅水泥石基本相当。膨胀水泥硬化浆体的后期膨胀主要依靠凝胶状AFt吸水肿胀而形成驱动力。膨胀刑的组分对膨胀水泥的水化热有明显影响,如果膨胀剂含有硫铝酸盐类矿物,则可能造成体系水化热的升高。  相似文献   

15.
The microstructural study was conducted on cement and cement-slag pastes immersed in different concentrations of Mg(NO_3)_2 solutions utilizing ~(29)Si, ~(27)Al NMR spectroscopy and XRD techniques. The results show that the hydration of both the cement and cement-slag pastes is delayed when the pastes are cured in Mg(NO_3)_2 solutions as compared to the pastes cured in water. Moreover, Mg~(2+) ions also exhibit an decalcifying and dealuminizing effect on the C-A-S-H in cement and cement-slag pastes, and thereby decrease Ca/Si and Al[4]/Si ratios of the C-A-S-H. The dealuminization of C-A-S-H is mitigated for cement-slag paste as compared to pure cement paste. The depolymerized calcium and aluminum ions from C-A-S-H gel mainly enter the pore solution to maintain the pH value and form Al~[6] in TAH, respectively. On the other hand, Mg~(2+) ions exert an impact on the intra-transition between Al~[6] species, from AFm and hydrogarnet to hydrotalcite-like phase. NO_3~-ions are interstratified in the layered Mg-Al structure and formed nitrated hydrotalcite-like phase(Mg_(1-x)Al_x(OH)_2(NO_3)_x·nH_2O). Results from both ~(27)Al NMR and XRD data show that ettringite seems not to react with Mg~(2+) ions.  相似文献   

16.
垃圾焚烧炉渣活性激发及对水泥性能的影响   总被引:1,自引:0,他引:1  
通过外掺法研究了城市生活垃圾焚烧炉渣用作水泥混合材对水泥性能的影响,同时考察了炉渣活性激发和炉渣水泥的环境安全性。实验结果表明:炉渣具有较弱的火山灰活性,随着其掺入量的增加,水泥标准稠度用水量增加,凝结时间延长,水泥强度下降,当PO 42.5水泥中炉渣掺量达到25%时仍能达到PO 32.5水泥生产要求。在炉渣活性激发方面,钙系列激发剂能够提高炉渣水泥的早期和后期强度(CaCl2会使后期强度倒缩),钠系列激发剂均会降低其强度。炉渣的掺入能够降低水泥净浆化学收缩率。在炉渣掺量35%时,砂浆试块的重金属极限溶出含量远低于国家标准最高允许浓度,不会对环境带来二次污染。  相似文献   

17.
以甲基丙烯酸、聚乙二醇1000、对甲苯磺酸、对苯二酚、过硫酸铵和甲基丙烯磺酸钠为原料,采用两步法合成出新型聚羧酸系高效减水剂(简称PC)。将合成的PC与目前广泛使用的萘系高效减水剂(简称FDN)相比,具有更加优异的性能,具体表现为:在掺量很少情况下,水泥净浆就具有较高的流动度;当掺量相同时,其对水泥净浆流动度远超FDN。此外,它与水泥的相容性好,具有缓凝及明显抑制水泥净浆流动度经时损失性能,对混凝土也能表现出显著的减水增强性,是一种性能优良,适合于配制高强、超高强混凝土的高效减水剂。  相似文献   

18.
The dominant factors during early hydration process of cement paste containing 10% metakaolin replacement (MK10) and 10% kaolin replacement (K10) are investigated in comparison to neat cement paste (NCP), and X-ray Diffraction (XRD) analysis is employed to identify the crystalline phases of all specimens. Thermogravimetric (TG) and Differential Scanning Calorimetry (DSC) are used to identify the phase constituents. The amount of acid-insoluble residue (AIR) of all specimens is used to evaluate the unreacted materials. The results indicate that, after the first day, MK act as nuclei for the formation of C-S-H during hydration of C3S and C2S, densifying the microstructure of cement paste. Its contribution is mainly due to the fine nature of the MK. From 3 days to 7 days, more and more MK reacts with CH to form C-S-H, making the microstructure denser. The strength contribution is mainly due to the chemical activity of MK.  相似文献   

19.
1 IntroductionCopperresidueisanindustrialby productdis chargedbycopperrefineries ,butitusuallycontainssomeusefulmetals .Forexamplecopperresiduecontains 4 %to5 %copper ,1.0 1g tgold ,2 4g tsilverand 4 2 %magne tite ,alltheseexceedthecontentforacomprehensiveutili zation .Inordertoextracttheseusefulmetals ,thecoolingtechnologyofremovingresidueisintroducedbyslowlycooling (4 8h)sothatsomemetallicionsgrow .Afteronemoreflotationforcopperandmagneticbyextractionofiron ,thedischargedresidueiscalledcopp…  相似文献   

20.
The long-term performance of moderate heat Portland cement with double-expansive sources (DE cement) in the system of high MgO clinker and gypsum was studied by XRD, SEM/EDAX and test methods for strength and expansion of cement. Results indicate that the periclase particle, whose size was 5-7.5μm in DE cement clinker containing 4.8 % MgO, existed individually. The periclase hydration in hardened DE cement paste started at about 60 days and completed up to 2 000 days, and ettringite in the paste was stable from 3 days to 2 000 days. Under the conditions of 4.5%-5.0 % MgO in clinker and 2.8%-3.4 %SO3 in cement, ettringite expansion and brucite expansion in DE cement paste had a continuity, entirety and stability. At the ages of 90, 365,730 and 2 000 days the expansion of the paste reached 0.07%-0.11%, 0.16%-0.21%, 0.21%-0.27 %, and 0.29%-0.38%, respectively. The results suggest that by using this cement in mass concrete it may compensate its temperature shrinkage and autogenous shrinkage to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号