共查询到15条相似文献,搜索用时 62 毫秒
1.
传统信息抽取针对特定的领域。当转换到新领域时,需要人工编写新的抽取规则和人工标记新的训练样本。开放信息抽取突破了传统信息抽取的局限性。现有的开放式信息抽取系统大多针对英文,然而,目前对于中文的研究相对较少,并主要以抽取三元组为主,没有针对中文抽取多元组的方法。因此提出了一种基于依存分析的中文开放式多元实体关系抽取方法。首先,对文本集进行预处理和依存关系分析;然后将动词视为候选关系词,将与此动词有满足条件的有效依存路径的基本名词短语视为实体词,关联两个及两个以上的实体词的关系词可与实体词组成候选多元实体关系组;最后,使用经过训练的逻辑回归分类器对多元实体关系组进行过滤。对百度百科数据集的抽取结果显示,所提方法在抽取大量实体关系多元组时准确性可达到81%。 相似文献
2.
针对传统实体关系抽取需要预先指定关系类型和制定抽取规则等无法胜任大规模文本的情况,开放式信息抽取(Open Information Extraction,OIE)在以英语为代表的西方语言中取得了重大进展,但对于汉语的研究却显得不足。为此,研究了在组块层次标注基础上应用马尔可夫逻辑网分层次进行中文专利开放式实体关系抽取的方法。实验表明:以组块为出发点降低了对句子理解的难度,外层和内层组块可以统一处理,减少了工程代价;而且在相同特征条件下与支持向量机相比,基于马尔可夫逻辑网的关系抽取效果更理想,外层和内层识别结果的F值分别可达到77.92%和69.20%。 相似文献
3.
针对基于特征向量的实体关系抽取方法中特征向量一般构造方法存在的不足,提出了基于互信息的实体对特征向量构造方法.该方法引入词和实体关系类别之间的互信息作为一个句子中实体对左右两边上下文特征提取的判断标准,并对实体关系类别特征词条进行编码,在此基础上再对实体对左右两边的上下文信息进行编码.这样做压缩了实体对上下文信息编码的维数,突出了实体关系各类别特性.实验结果表明本文的实体关系特征向量构造方法提高了中文实体关系抽取的准确率和召回率. 相似文献
4.
5.
针对实体关系抽取任务中的三元组重叠问题,基于编码器-解码器结构的联合抽取方法能够通过序列生成的方式加以解决。但现有方法没有充分利用实体类别信息,而实体类别信息对于构建更丰富的语义特征并进一步优化关系模型的效果具有重要意义。在使用编码器-解码器结构的基础上,融合实体类别信息构建实体关系联合抽取模型FETI。编码器采用经典Bi-LSTM结构,解码器采用树状解码替代传统的一维线性解码。同时,在解码阶段增加头尾实体类别的预测,并通过辅助损失函数进行约束,使模型能够更有效地利用实体类别信息。在百度公开的中文数据集DuIE上进行实验,结果表明,FETI的F1值达到0.758,相对于CopyMTL、WDec、MHS、Seq2UMTree模型提升了2.02%~9.86%,验证了融合实体类别信息对于提升实体关系抽取模型性能的有效性。此外,基于不同解码顺序和不同权重损失函数的实验结果表明,解码顺序对模型性能影响较大,而对主要任务的损失函数赋予较高权重,能够保证辅助任务为主要任务提供有效的背景知识,同时限制噪声的影响。 相似文献
6.
作为信息抽取任务中极为关键的一项子任务,实体关系抽取对于语义知识库的构建和知识图谱的发展都有着重要的意义。对于中文而言,语义关系更加复杂,实体关系抽取的作用也就愈加显著,因此,对中文实体关系抽取的研究方法进行详细考察极为必要。本文从实体关系抽取的产生和发展开始,对目前基于中文的实体关系抽取技术现状作了阐述;按照关系抽取方法对语料的依赖程度分为4类:有监督的实体关系抽取、无监督的实体关系抽取、半监督的实体关系抽取和开放域的实体关系抽取,并对这4类抽取方法进行具体的分析和比较;最后介绍深度学习在中文实体关系抽取上的应用成果和发展前景。 相似文献
7.
命名实体识别和关系抽取是自然语言处理领域的两个重要基本问题.联合抽取方法被提出用于解决传统解决管道抽取方法中存在的一些问题.为了充分融合头实体和句子的语义信息,同时解决可能存在的重叠三元组问题,论文提出了一种新的实体关系联合抽取方法,主要通过序列标注的方式抽取实体关系.该方法主要使用条件层归一化(Condi-tional Layer Normalization)进行信息融合.同时,该方法还赋予了待抽取的头实体和尾实体不同的语义编码.实验结果表明,该方法在使用预训练的BERT预处理编码器的情况下,在NYT和WebNLG数据集上有很好的表现. 相似文献
8.
针对信息抽取领域中存在的抽取结果难以满足需要的问题,给出基于条件随机域模型的方法,以解决组块标注和实体关系抽取问题。通过定义中文组块和实体关系的标注方式,选择比较通用的《人民日报》语料,训练出效率较高的二阶模板来抽取文本中的实体关系。实验结果表明,该方法可以获得更好的抽取效果。 相似文献
9.
语义信息在命名实体间语义关系抽取中具有重要的作用。该文以《同义词词林》为例,系统全面地研究了词汇语义信息对基于树核函数的中文语义关系抽取的有效性,深入探讨了不同级别的语义信息和一词多义等现象对关系抽取的影响,详细分析了词汇语义信息和实体类型信息之间的冗余性。在ACE2005中文语料库上的关系抽取实验表明,在未知实体类型的前提下,语义信息能显著提高抽取性能;而在已知实体类型的情况下,语义信息也能明显提高某些关系类型的抽取性能,这说明《词林》语义信息和实体类型信息在中文语义关系抽取中具有一定的互补性。 相似文献
10.
第六届中国健康信息处理会议(China conference on Health Information Processing,CHIP 2020)组织了中文医疗信息处理方面的6个评测任务,其中任务2为中文医学文本实体关系抽取任务,该任务的主要目标为自动抽取中文医学文本中的实体关系三元组。共有174支队伍参加了评测任务,最终17支队伍提交了42组结果,该任务以微平均F1值为最终评估标准,提交结果中F1最高值达0.648 6。 相似文献
11.
中文实体关系抽取中的特征选择研究 总被引:9,自引:4,他引:9
命名实体关系抽取是信息抽取研究领域中的重要研究课题之一。通过分析,本文提出将中文实体关系划分为: 包含实体关系与非包含实体关系。针对同一种句法特征在识别它们时性能的明显差异,本文对这两种关系采用了不同的句法特征集,并提出了一些适合各自特点的新的句法特征。在CRF 模型框架下,以ACE2007 的语料作为实验数据,结果表明本文的划分方法和新特征有效的提高了汉语实体关系抽取任务的性能。关键词: 计算机应用;中文信息处理;实体关系抽取;包含关系;非包含关系;特征选择;ACE 评测 相似文献
12.
开放关系抽取(Open Relation Extraction, OpenRE)旨在从开放域语料库中抽取关系事实。大多数OpenRE方法通常局限于无监督方法提取命名实体之间的关系模式,然后将语义等价的模式聚类成一个关系簇,但由于缺少监督信息且聚类精度较低,影响了最终的关系抽取效果。为了进一步提高聚类性能,该文提出一种无监督集成聚类框架(Unsupervised Ensemble Clustering,UEC),它将无监督集成学习与基于信息度量的多步聚类算法相结合自主创建高质量伪标签,并以此作为监督信息改进关系特征的学习,从而引导聚类过程,获得更好的标签质量,最后通过多次迭代聚类发现文本中的关系类型。在FewRel和NYT-FB数据集上的实验结果表明,该文方法优于其他主流的基线OpenRE模型,F1值分别达到了65.2%和67.1%。 相似文献
13.
古汉语文本承载着丰富的历史和文化信息, 对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用. 针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题, 提出了一种基于BERT古文预训练模型的实体关系联合抽取模型 (entity relation joint extraction model based on BERT-ancient-Chinese pre-trained model, JEBAC). 首先, 通过融合BiLSTM神经网络和注意力机制的BERT古文预训练模型 (BERT-ancient-Chinese pre-trained model integrated BiLSTM neural network and attention mechanism, BACBA), 识别出句中所有的subject实体和object实体, 为关系和object实体联合抽取提供依据. 接下来, 将subject实体的归一化编码向量与整个句子的嵌入向量相加, 以更好地理解句中subject实体的语义特征; 最后, 结合带有subject实体特征的句子向量和object实体的提示信息, 通过BACBA实现句中关系和object实体的联合抽取, 从而得到句中所有的三元组信息(subject实体, 关系, object实体). 在中文实体关系抽取DuIE2.0数据集和CCKS 2021的文言文实体关系抽取C-CLUE小样本数据集上, 与现有的方法进行了性能比较. 实验结果表明, 该方法在抽取性能上更加有效, F1值分别可达79.2%和55.5%. 相似文献
14.
在自然语言处理领域,信息抽取一直以来受到人们的关注.信息抽取主要包括3项子任务:实体抽取、关系抽取和事件抽取,而关系抽取是信息抽取领域的核心任务和重要环节.实体关系抽取的主要目标是从自然语言文本中识别并判定实体对之间存在的特定关系,这为智能检索、语义分析等提供了基础支持,有助于提高搜索效率,促进知识库的自动构建.综合阐述了实体关系抽取的发展历史,介绍了常用的中文和英文关系抽取工具和评价体系.主要从4个方面展开介绍了实体关系抽取方法,包括:早期的传统关系抽取方法、基于传统机器学习、基于深度学习和基于开放领域的关系抽取方法,总结了在不同历史阶段的主流研究方法以及相应的代表性成果,并对各种实体关系抽取技术进行对比分析.最后,对实体关系抽取的未来重点研究内容和发展趋势进行了总结和展望. 相似文献
15.
实体关系自动抽取 总被引:36,自引:7,他引:36
实体关系抽取是信息抽取领域中的重要研究课题。本文使用两种基于特征向量的机器学习算法,Winnow 和支持向量机(SVM) ,在2004 年ACE(Automatic Content Extraction) 评测的训练数据上进行实体关系抽取实验。两种算法都进行适当的特征选择,当选择每个实体的左右两个词为特征时,达到最好的抽取效果,Winnow和SVM算法的加权平均F-Score 分别为73108 %和73127 %。可见在使用相同的特征集,不同的学习算法进行实体关系的识别时,最终性能差别不大。因此使用自动的方法进行实体关系抽取时,应当集中精力寻找好的特征。 相似文献