首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
在高压反应釜内,以四氢萘为供氢溶剂,Fe2O3+S为催化剂,研究了温度、反应时间、初始氢压、配比对兖州煤与秸秆共液化的影响。结果表明,提高反应温度,转化率、油产率增加;延长反应时间对转化率、油产率的影响较小;升高初始氢压,转化率、油产率刚开始增加,6 MPa以后增幅趋缓;在m(秸秆)∶m(兖州煤)=0.5∶9.5时,共液化的油产率为60.45%,比兖州煤单独液化的油产率提高了4.17%;在m(兖州煤)∶m(秸秆)=9.5∶0.5,440℃,8 MPa,90 min的条件下,共液化转化率和油产率达到最大,分别为83.58%和63.1%。  相似文献   

2.
胜利煤与木屑共液化研究   总被引:2,自引:0,他引:2  
以胜利煤与木屑为原料,采用Fe2O3催化剂和S助催化剂,用高压反应釜,研究了配比、温度、反应时间及初始氢压等因素对两者共液化的影响.研究结果表明,木屑能促进煤的转化,当木屑与煤的质量比为1∶9时,油产率达到最大值;在实验条件范围内,转化率和油产率均随反应温度、反应时间和初始氢压的增大而增大.  相似文献   

3.
兖州煤与木质素共液化反应性的研究   总被引:3,自引:0,他引:3  
采用单因素法,以四氢萘为供氢溶剂,以Fe2O3和S为催化剂,在高压釜内,研究了配比、温度、反应时间和初始氢压对兖州煤与木质素共液化反应性的影响.结果表明,在液化中适量添加木质素可提高兖州煤的液化反应性.综合考虑实验条件和经济成本,得到共液化的最佳工艺条件为:兖州煤:木质素(质量比)=9:1,440℃,60min,8MPa,在此条件下转化率与油产率分别为86.8%与62.9%.  相似文献   

4.
高惰质组分五彩湾煤直接液化性能研究   总被引:2,自引:1,他引:1  
以新疆五彩湾煤为研究对象,进行了煤质和热解分析,考察了溶煤比、反应时间、氢初压和反应温度对其加氢液化效果的影响.结果表明,尽管五彩湾煤惰质组含量高达81.5%,镜质组最大反射率达到0.73%,挥发分低于37%,H/C仅为0.59,但在氢初压仅为6.0MPa,溶煤比1.75和反应时间60min条件下,其最佳液化温度为450℃,油产率和转化率分别达到55.20%和76.76%,仍然具有良好的液化性能.  相似文献   

5.
为研究新疆淖毛湖煤直接液化反应特性和产品分布规律,在0.5 L间歇式高压釜中,以四氢萘为溶剂,纳米氧化铁为催化剂及S为助剂,考察了不同反应温度、反应时间条件对煤转化率和液化产物收率的影响。结果表明:淖毛湖煤易液化,在反应器温度刚加热到425℃时,煤转化率和液化油收率已分别达到96.6%、56.68%;随着反应温度的升高以及反应时间的延长,煤转化率、氢耗、气体产率、油收率逐渐增加,而沥青类物质产率下降,水产率基本保持不变;当反应温度进一步增加以及反应时间继续延长,轻质油将会发生裂解,导致气体产率进一步增加,而油收率有所降低。当反应温度为455℃、反应时间为80 min时,煤转化率达到99.6%,油、沥青和气体收率分别为73.42%、1.64%、16.61%,氢耗为4.85%。基于液化试验结果,建立了5集总的反应动力学模型,采用优化算法获得动力学模型参数,煤转化率、沥青类物质和油气收率的模拟值和试验值的相对误差分别为0.5%、1.0%、8.0%。  相似文献   

6.
孙文娟 《应用化工》2011,40(7):1226-1228
在高压釜内,研究了温度、反应时间、初始氢压和搅拌速率对木质素加氢液化反应的影响。结果表明,木质素加氢液化的最佳工艺条件为:温度300℃,反应时间60 min,氢压3 MPa,搅拌速率800 r/min。在此条件下,木质素转化率与液体产率分别为71.3%与66.8%。  相似文献   

7.
为研究胜利褐煤在初始阶段的煤液化反应动力学,在可快速升降温的微型高压釜中对胜利褐煤进行了加氢液化反应,得到了反应初期煤液化参数,并对胜利褐煤加氢液化反应初期的动力学行为进行分析。结果表明,虽然反应器升温速度较快,但到达反应温度时,仍有一定量的煤发生了转化,在反应温度440℃、反应时间为0时转化率达到28.12%;在较低温度下,胜利褐煤只发生了部分热解反应,反应后期几乎不再转化,在380℃、反应10 min后转化率已达28%,后续基本不变;随着反应温度的升高,反应转化率、油水产率、气产率等指标增大,反应前10 min增速较快,10~25 min时反应速率减缓,主要是沥青烯组分作为中间产物不断向油转化,速率较低。  相似文献   

8.
采用NMP/CS(2体积比1︰1)混合溶剂,在微波辐射下对五彩湾煤进行溶胀处理,并将原煤和微波溶胀煤样进行对比表征和加氢液化实验,考察了液化反应温度、反应气氛、溶胀剂对液化效果的影响。结果表明:微波溶胀后,煤样孔隙结构显著增加,结构发生变化。在液化条件是温度450℃、氢初压6.0 MPa、溶煤比1.75︰1和反应时间60 min,油产率和转化率分别是原煤55.02%和76.76%,微波溶胀煤74.03%和84.78%。  相似文献   

9.
利用高压反应釜,采取程序控制升温的方法,以义马煤为原料,循环油为溶剂,Fe2O3为催化剂和S为助催化剂,在不同反应时间、温度和初始氢压下,测定了义马煤直接液化效果的影响因素.结果表明,随着温度升高,转化率呈减小趋势,而油产率随着反应温度的增加呈现出先增加后减小的趋势,在380℃时油产率达到最大值;随着初始压力的增加,转化率和油产率都有所增加,但增加幅度很小,在9 MPa时油产率达到最大值;随着反应时间的增加,转化率和油产率都有所增加,在120 min时油产率和转化率均达到最大值.  相似文献   

10.
有效性和经济角度考虑,选定硫铁化物为煤与生物质加氢共液化的催化剂.在不同条件下制备的催化剂对反应有不同的催化效果.硫铁催化剂可降低反应苛刻度,在300~400℃范围内可明显提高反应转化率和油产率.建议合适的反应条件为:温度350℃,反应时间20min,初始冷氢压3.40MPa.  相似文献   

11.
在500 mL的间歇式高压反应釜中进行了胜利褐煤铁基催化剂条件加氢液化实验,考察了H2O+CO系统中温度、压力、煤水质量比对总转化率、油气产率和沥青质产率的影响。结果表明,随着反应温度的提高,液化总转化率和油产率增加,沥青质产率降低;随着煤水质量比的增加,总转化率先降低后增加,在1∶1.2处出现拐点,油产率有相同的变化趋势,但低煤水质量比条件下油产率较高,高压有利于加氢液化反应。通过红外、核磁共振分析,证明液化产物中存在大量酚和醇类物质。  相似文献   

12.
煤与生物质的共热解液化研究进展   总被引:3,自引:2,他引:1  
煤与生物质共热解液化将是燃料与化学品重要的转化技术之一。本文从共热解液化机理、共热解液化反应动力学、煤与生物质的协同作用、催化剂、共热解液化工艺、共热解液化产物等方面对煤与生物质共热解液化研究进展进行了综述,指出煤与生物质的快速共热解液化将是重要的发展方向,催化剂的应用和液化产物的精制将对提升液化油的品位和降低成本,对实现共液化油替代现行石化液体油具有更重要的意义。  相似文献   

13.
Co-liquefaction of lignite and sawdust under syngas   总被引:1,自引:0,他引:1  
Individual and co-liquefaction of lignite and sawdust (CLLS) under syngas was performed in an autoclave and the effects of temperature, initial syngas pressure, reaction time and ratio of solvent to coal and biomass on the product distribution of CLLS were studied. Sawdust is easier to be liquefied than lignite and the addition of sawdust promotes the liquefaction of lignite. There is some positive synergetic effect during CLLS. In the range of the experimental conditions investigated, the oil yield of CLLS increases with the increase of temperature, reaction time (10-30 min) and the ratio of the solvent to the feedstock (0-3), but varies little with the increase of initial syngas pressure. Accordingly, the total conversion, the yield of preasphaltene and asphaltene (PA + A) and gas, changes by the difference in operation conditions of liquefaction. The gas products are mainly CO and CO2 with a few C1-C4 components. The syngas can replace the pure hydrogen during CLLS. The optimized operation conditions in the present work for CLLS are as follows: syngas, temperature 360 °C, initial cold pressure 3.5 MPa, reaction time 30 min, the ratio of solvent to coal and sawdust 3:1. Water gas shift reaction occurs between CO in the syngas and H2O from coal and sawdust moisture during the co-liquefaction, producing the active hydrogen which increases the conversion of liquefaction and decreases the hydrogen consumption.  相似文献   

14.
Thermal and catalytic liquefactions of waste (recycled) tire and coal were studied both separately and using mixtures with different tire/coal ratios. Runs were made in a batch tubing bomb reactor at 350–425°C. The effect of hydrogen pressure on the product slate was also studied. Mixtures of tire components and coal were used in order to understand the role of the tire as a solvent in co-liquefaction. In the catalytic runs, a ferric-sulfide-based catalyst impregnated in situ in the coal was used. Both the tire components and the entire tire exhibit a synergistic effect on coal conversion. The extent of synergism depends on temperature, H2 pressure and the tire/coal ratio. Experiments with coal and tire components show that the synergistic effect of tire is due to the rubber portion of the tire and not the carbon black. The synergism mainly leads to an increase in the yields of asphaltenes, which are nearly double those in the coal-only runs at 400°C. The conversion of coal increases dramatically using the catalyst, but the catalytic effect is attenuated somewhat in the presence of tire, especially at high tire/coal ratios. The data were analyzed using a consecutive reaction scheme for the liquefaction of coal to asphaltenes and thence to oil+gas, both reactions being of second order; a second-order conversion of tire to oil+gas; and an additional synergism reaction when both coal and tire are present, first-order in both coal and tire. Parallel schemes were assumed for thermal (uncatalyzed) and catalyzed reactions. The uncatalyzed liquefaction of coal has a low apparent activation energy, 36 kJ/mol, compared to those for the synergism reaction (84 kJ/mol) and the catalytic coal liquefaction (158 kJ/mol). The conversion of asphaltenes to oil+gas is relatively independent of temperature and of the presence of the catalyst. The catalyst appears to play a significant role in the conversion of coal to asphaltenes, but a negligible role in the synergism reaction.  相似文献   

15.
选用小麦秸秆和金沟褐煤作为实验原料在间歇式高压反应釜中进行液化实验,考察了不同温度、不同秸秆/煤比例下添加离子液体时小麦秸秆与褐煤共液化产物分布情况及硫的变迁行为。研究结果显示:当小麦秸秆和褐煤在亚临界水中液化时,添加离子液体1-丁基3-甲基咪唑氯盐[Bmim]Cl会降低正己烷不溶组分收率,但可以提高气体收率与总转化率。添加[Bmim]Cl后,随着样品中小麦秸秆比例减少,液化油收率、正己烷不溶组分收率、四氢呋喃可溶组分收率、气体收率与总转化率均呈下降趋势。添加 [Bmim]Cl后残渣中硫的相对含量增加,其他产物中硫的相对含量减小;添加 [Bmim]Cl后残渣中有机硫的相对含量以及气相中COS和H2S含量都随温度升高而增加。  相似文献   

16.
The co-liquefaction of biomass and high-density polyethylene (HDPE) mixtures in sub- and supercritical water was studied in a 500 mL stainless steel autoclave. The effects of reaction temperature (613–713 K), holding time (0–80 min), water to biomass-HDPE ratio (4–10), water filling ratio (6–18 vol.%) and biomass-plastic composition (100/0, 80/20, 50/50, 20/80 and 0/100) on the liquefaction of biomass and plastic to oils were investigated in 15.2–27.1 MPa. At 653 K, the most important parameter for the oil yield was biomass/HDPE ratio in the feedstock, and oil yield close to 60 wt.% was obtained for the 20/80 weight ratio of biomass/HDPE mixture. In some cases, non-additive effects were observed, leading to higher yield of oils. Results showed that the addition of biomass to HDPE liquefaction could make the reaction conditions milder, and enhance the conversion of HDPE at lower temperature, implying the synergistic effect of biomass and HDPE. The oils were analyzed by GC-MS and Elemental Analyzer, indicating that the oil from co-liquefaction was better in quality, comparing with that produced from pure biomass.  相似文献   

17.
超临界水直接液化褐煤是高湿低阶褐煤高效转化与资源化利用的一个重要的发展方向。阐述了超临界水液化制油的优势,总结了液化过程中的热解反应、脱杂反应、缩聚反应等关键反应;重点论述了操作条件(温度、停留时间、压力、溶剂等)对反应过程的影响机理;针对油品质的升级,总结了催化剂在液化油升级中的应用,分析了煤本身所含的铁系催化剂的催化特点,总结了贵金属在催化升级中的研究现状及部分过渡金属合金的高效催化特性;强调了煤与生物质共同液化的协同作用。对液化过程中存在的问题进行了总结,并展望了未来的工业放大应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号