首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Purinergic receptors are a class of cell surface receptors for purines that prefer ATP or ADP over adenosine. The surface receptors for extracellular nucleotides are called P2 receptors. They are activated by both pyrimidine and purine nucleotides. ADP initiates platelet aggregation by 'simultaneous activation of two G protein-coupled receptors, P2Y1 and P2Y12. P2Y12 has been shown to be the target of the thienopyridine drugs, ticlopidine and clopidogrel. Here, the active sites of P2Y12 for ATP as well as ADP are predicted by bioinformatics and molecular modeling. First, the three-dimensional (3D) structure of P2Y12 was constructed by InsightII/Homology module using the corresponding bovine rhodopsin (PDB code: 1HZX) as the template. Then the primary structures were optimized by energy minimization that has been successfully accepted by the Protein Data Bank (PDB code: 1VZ1). Second, a simple scoring matrix was built up based on the analysis of 13 known ATP-binding proteins. And the most probable active sites of P2Y12 were predicted using the scoring matrix, which include three distant areas: "head area" (LGTGPLRTFV, 87-96), "middle area" (VGLITNGLAM, 38-47, and LGAKILSVVI, 139-148), and "bottom area" (RTRGVGKVPR, 222-231). Subsequently the structural model of P2Y12 was docked with ATP/ADP in comparison with P2Y1 (PDB code 1ddd). As a comparison, we docked its antagonists, such as ticlopidine and clopidogrel, to the most probable sites and calculated their intermolecular energy. Our results imply that P2Y12 has the potential to be inhibited by ADP/ATP analogs, and it suggests that P2Y12 acts as a target of new drugs that inhibit platelet aggregation.  相似文献   

2.
Cytochrome P450 CYP2D6 is involved in the oxidation of well over 150 drugs and, in general, those which contain a basic nitrogen atom in the molecule. To clarify how the residues of CYP2D6 are utilized for orientating a wide range of its specific substrates and distinguishing them from a variety of other organic compounds, docking studies by AutoDock and molecular dynamics (MD) simulations were conducted. Specific ligands were docked to both the homology model and crystal structures optimally to estimate the site of reaction on the ligand molecule and the binding energy for the complex, which were generally in good agreement with the experimental data. MD simulation for the CYP2D6-propranolol complex was then carried out to reveal the amino acid residues interacting with the substrate at the active site. Phe-120, Glu-216, Asp-301, and Phe-483 are identified as the substrate-binding residues in agreement with previously reported site-directed mutagenesis data and the crystal structure reported recently (PDB code: 2F9Q). As well as these residues, our theoretical prediction suggests that Phe-219 and Glu-222 are also important residues for mediating oxidation of substrates, especially propranolol.  相似文献   

3.
A homology model of the active site region of tripeptidyl peptidase II (TPP II) was constructed based on the crystal structures of four subtilisin-like templates. The resulting model was subsequently validated by judging expectations of the model versus observed activities for a broad set of prepared TPP II inhibitors. The structure-activity relationships observed for the prepared TPP II inhibitors correlated nicely with the structural details of the TPP II active site model, supporting the validity of this model and its usefulness for structure-based drug design and pharmacophore searching experiments.  相似文献   

4.
Determination of potential drug toxicity and side effect in early stages of drug development is important in reducing the cost and time of drug discovery. In this work, we explore a computer method for predicting potential toxicity and side effect protein targets of a small molecule. A ligand-protein inverse docking approach is used for computer-automated search of a protein cavity database to identify protein targets. This database is developed from protein 3D structures in the protein data bank (PDB). Docking is conducted by a procedure involving multiple conformer shape-matching alignment of a molecule to a cavity followed by molecular-mechanics torsion optimization and energy minimization on both the molecule and the protein residues at the binding region. Potential protein targets are selected by evaluation of molecular mechanics energy and, while applicable, further analysis of its binding competitiveness against other ligands that bind to the same receptor site in at least one PDB entry. Our results on several drugs show that 83% of the experimentally known toxicity and side effect targets for these drugs are predicted. The computer search successfully predicted 38 and missed five experimentally confirmed or implicated protein targets with available structure and in which binding involves no covalent bond. There are additional 30 predicted targets yet to be validated experimentally. Application of this computer approach can potentially facilitate the prediction of toxicity and side effect of a drug or drug lead.  相似文献   

5.
Consideration of binding competitiveness of a drug candidate against natural ligands and other drugs that bind to the same receptor site may facilitate the rational development of a candidate into a potent drug. A strategy that can be applied to computer-aided drug design is to evaluate ligand-receptor interaction energy or other scoring functions of a designed drug with that of the relevant ligands known to bind to the same binding site. As a tool to facilitate such a strategy, a database of ligand-receptor interaction energy is developed from known ligand-receptor 3D structural entries in the Protein Databank (PDB). The Energy is computed based on a molecular mechanics force field that has been used in the prediction of therapeutic and toxicity targets of drugs. This database also contains information about ligand function and other properties and it can be accessed at http://xin.cz3.nus.edu.sg/group/CLiBE.asp. The computed energy components may facilitate the probing of the mode of action and other profiles of binding. A number of computed energies of some PDB ligand-receptor complexes in this database are studied and compared to experimental binding affinity. A certain degree of correlation between the computed energy and experimental binding affinity is found, which suggests that the computed energy may be useful in facilitating a qualitative analysis of drug binding competitiveness.  相似文献   

6.
Increased resistance of MRSA (multidrug resistance Staphylococcus aureus) to anti-infective drugs is a threat to global health necessitating the development of anti-infectives with novel mechanisms of action. Phenylalanine tRNA synthetase (PheRS) is a unique enzyme of the aminoacyl-tRNA synthetases (aaRSs), which are essential enzymes for protein biosynthesis. PheRS is an (αb)2 tetrameric enzyme composed of two alpha subunits (PheS) and two larger beta subunits (PheT). Our potential target in the drug development for the treatment of MRSA infections is the phenylalanine tRNA synthetase alpha subunit that contains the binding site for the natural substrate. There is no crystal structure available for S. aureus PheRS, therefore comparative structure modeling is required to establish a putative 3D structure for the required enzyme enabling development of new inhibitors with greater selectivity. The S. aureus PheRS alpha subunit homology model was constructed using Molecular Operating Environment (MOE) software. Staphylococcus haemolyticus PheRS was the main template while Thermus thermophilus PheRS was utilised to predict the enzyme binding with tRNAphe. The model has been evaluated and compared with the main template through Ramachandran plots, Verify 3D and Protein Statistical Analysis (ProSA). The query protein active site was predicted from its sequence using a conservation analysis tool. Docking suitable ligands using MOE into the constructed model were used to assess the predicted active sites. The docked ligands involved the PheRS natural substrate (phenylalanine), phenylalanyl-adenylate and several described S. aureus PheRS inhibitors.  相似文献   

7.
Phosphomannose isomerase is a zinc metalloenzyme that catalyzes the reversible isomerization of mannose-6-phosphate and fructose-6-phosphate, and the three-dimensional (3D) structure of human phosphomannose isomerase has not been reported. In order to understand the catalytic mechanism, the 3D structure of the protein is built by using homology modeling based on the known crystal structure of mannose-6-phosphate isomerase from (PDB code 1PMI). The model structure is further refined by energy minimization and molecular dynamics methods. The mannose-6-phosphate-enzyme complex is developed by molecular docking and the key residues involved in the ligand binding are determined, which will facilitate the understanding of the action mode of the ligands and guide further genetic studies. Our results suggest a hydride transfer mechanism of alpha-hydrogen between the C1 and C2 positions but do not support the cis-enediol mechanism. The detailed mechanism involves, on one side, Zn2+ mediating the movement of a proton between O1 and O2, and, on the other side, the hydrophobic environment formed in part by Tyr278 promoting transfer of a hydride ion.  相似文献   

8.
Homologues of the selenoprotein glutathione peroxidase (GPx) have been previously identified in poxviruses and in RNA viruses including HIV-1 and hepatitis C virus (HCV). Sequence analysis of the NS4 region of Japanese encephalitis virus (JEV) suggests it may encode a structurally related but functionally distinct selenoprotein gene, more closely related to the iron-binding protein ferredoxin than to GPx, with three highly conserved UGA codons that align with essential Cys residues of ferredoxin. Comparison of the probe JEV sequence to an aligned family of ferredoxin sequences gave an overall 30.3% identity and 45.8% similarity, and was statistically significant at 4.9 S.D. (P < 10(-6)) above the average score computed for randomly shuffled sequences. A 3-dimensional model of the hypothetical JEV protein (JEV model) was constructed by homology modeling using SYBYL, based upon a high resolution X-ray structure of ferredoxin (PDB code: 1awd). The JEV model and the model from 1awd were subsequently subjected to molecular dynamics simulations in aqueous medium using AMBER 6. The solution structure of the JEV model indicates that it could fold into a tertiary structure globally similar to ferredoxin 1awd, with RMSD between the averaged structures of 1.8 A for the aligned regions. The modeling and MD simulations data also indicate that this structure for the JEV protein is energetically favorable, and that it could be quite stable at room temperature. This protein might play a role in JEV infection and replication via TNF and other cellular stimuli mediated via redox mechanisms.  相似文献   

9.
Ornithine delta-aminotransferase (OAT) is an important enzyme in proline biosynthetic pathway and is implicated in salt tolerance in higher plants. OAT transaminates ornithine to pyrroline 5-carboxylate, which is further catalyzed to proline by pyrroline 5-carboxylate reductase. The Vigna aconitifolia OAT cDNA, encoding a polypeptide of 48.1 kDa, was expressed in Escherichia coli and the enzyme was partially characterized following its purification using (NH(4))(2)SO(4) precipitation and gel filtration techniques. Optimal activity of the enzyme was observed at a temperature of 25 degrees C and pH 8.0. The enzyme appeared to be a monomer and exhibited high activity at 4mM ornithine. Proline did not show any apparent effect but isoleucine, valine and serine inhibited the activity when added into the assay mixture along with ornithine. Omission of pyridoxal 5'-phosphate from the reaction mixture reduced the activity of this enzyme by 60%. To further evaluate these biochemical observations, homology modeling of the OAT was performed based on the crystal structure of the ornithine delta-aminotransferase from humans (PDB code 1OAT) by using the software MODELLER6v2. With the aid of the molecular mechanics and dynamics methods, the final model was obtained and assessed subsequently by PROCHECK and VERIFY-3D graph. With this model, a flexible docking study with the substrate and inhibitors was performed and the results indicated that Gly106 and Lys256 in OAT are the important determinant residues in binding as they have strong hydrogen bonding contacts with the substrate and inhibitors. These observations are in conformity with the results obtained from experimental investigations.  相似文献   

10.
Benzimidazole-2-carbamate derivatives (BzC) are among the most important broad-spectrum anthelmintic drugs for the treatment of nematode infections. BzC selectively bind to the β-tubulin monomer and inhibit microtubule polymerization. However, the crystallographic structure of the nematode tubulin and the mechanism of action are still unknown. Moreover, the relation between the mechanism of action and the binding site of BzC has not yet been explained accurately. By using the amino acid sequence of Trichinella spiralis β-tubulin as a basis and by applying homology modeling techniques, we were able to build a 3D structure of this protein. In order to identify a binding site for BzC, molecular docking and molecular dynamics calculations were carried out with this model. The results were in good agreement with the most common amino acid mutations associated with drug resistance (F167Y, E198A and F200Y) and with the experimental results of competitive inhibition of colchicine binding to tubulin. Besides, Glu198, Thr165, Cys239 and Gln134 were identified as important amino acids in the binding process since they directly interact with BzC in the formation of hydrogen bonds. The results presented in this paper are a step further towards the understanding, at the molecular level, of the mode of action of anthelmintic drugs. These results constitute valuable information for the design or improvement of more potent and selective molecules.  相似文献   

11.
多巴胺是大脑中含量最丰富的儿茶酚胺类神经递质,主要通过多巴胺受体调控中枢神经系统的多种生理功能,其中多巴胺D2受体与药物成瘾、精神分裂症、帕金森病等多种疾病的发生相关。然而多巴胺D2受体的晶体结构至今尚未解析出来,给相关疾病的药物设计与开发带来困难。本文采用同源模建的方法,用目前与多巴胺D2受体同源性最高的多巴胺D3受体(3PBL)作为模板,构建多巴胺D2受体的三维结构。经过优化和分子动力学模拟,用Profile-3D和Ramachandran plot对模型进行评估,然后用多巴胺D2受体拮抗剂千金藤啶碱(stepholidine,SPD)进行对接验证,证明构建的多巴胺D2受体模型合理、可靠。  相似文献   

12.
Hemocyanin is a multimeric type-3 copper containing oxygen carrier protein that exhibits phenoloxidase-like activity and is found in selected species of arthropoda and mollusca. The phenoloxidase activity in the molluscan hemocyanins can be triggered by the proteolytic removal of the C-terminal β-rich sandwich domain of the protein or by the treatment with chemical agents like SDS, both of which enable active site access to the phenolic substrates. The mechanism by which SDS treatment enhances active site access to the substrates is however not well understood in molluscan hemocyanins. Here, using a combination of in silico molecular dynamics (MD) and docking studies on the crystal structure of Octopus dofleini hemocyanin (PDB code:1JS8), we demonstrate that the C-terminal β-domain of the protein plays a crucial role in regulating active site access to bulky phenolic substrates. Furthermore, MD simulation of hemocyanin in SDS revealed displacement of β-domain, enhanced active site access and a resulting increase in binding affinity for substrates. These observations were further validated by enzyme kinetics experiments.  相似文献   

13.
To understand the structural features that dictate the selectivity of diverse nonsteroidal antiinflammatory drugs for the two isoforms of the human prostaglandin H2 synthase (PGHS), the three-dimensional (3D) structure of human COX-2 was assessed by means of sequence homology modeling. The ovine COX-1 structure, solved by X-ray diffraction methods and sharing a 61% sequence identity with human COX-2, was used as template. Both structures were energy minimized using the AMBER 4.0 force field with a dielectric constant of 4r. (S)-Flurbiprofen, a nonselective COX inhibitor, and SC-558, a COX-2-selective ligand, were docked at the cyclooxygenase binding site in both isozymes, evidencing the role of different residues in the ligand–protein interaction. The 3D structures of the constructed four ligand–enzyme complexes were refined by energy minimization. Molecular dynamics simulations were also carried out, to understand more deeply the structural origins of the selectivity. Distances calculated during the dynamics process between the different ligands and the interacting residues of the two PGHS isozymes provided evidence of the flexible nature of the cyclooxygenase active site, permitting the identification of different conserved and nonconserved residues as responsible for ligand selectivity.  相似文献   

14.
The ultra-rapid delayed rectifier potassium current (I(Kur)), encoded by Kv1.5 gene, is the critical determinant of Phase I repolarization of action potential duration (APD). The evidences that Kv1.5 gene expresses more extensively in human atrial myocytes than in ventricle and the I(Kur) currents has not been recorded in the human ventricle, suggest Kv1.5 potassium channel as a selective target for the treatment of atrial fibrillation (AF). Recent mutagenesis studies have provided us some evidences that are useful in designing Kv1.5 blockers. In order to further evaluate these molecular biological information, the homology model of Kv1.5 potassium channel was established based on the Kv1.2 crystal structure (PDB entry: 2A79) using MODELLER 9v2 program. After the molecular dynamics refinement, the optimized homology model was assessed as a reliable structure by PROCHECK, ERRAT, WHAT-IF, PROSA2003 and DOPE graph. The results of molecular docking studies on different Kv1.5 inhibitors are in agreement with the published mutagenesis data. Based on the docking conformations, a pharmacophore model was developed by HipHop algorithm in order to probe the common features of blockers. By analyzing the results, active site architecture, certain key residues and pharmacophore common-features that are responsible for substrate specificity were identified on the Kv1.5 potassium channel, which would be very helpful in understanding the blockade mechanism of Kv1.5 potassium channel and providing insights into rational design of novel Kv1.5 blockers.  相似文献   

15.
The receptor tyrosine kinase, KIT, displays activating mutations in the kinase domain, which are associated with various cancers. We have used homology modelling based on the crystal structures of the insulin receptor kinase in active and inactive conformations to predict the corresponding structures of the KIT kinase domain. We have prepared four KIT models, one each for the active and inactive conformations of the wild-type and of the Asp816Val mutant proteins. We have also placed ATP into the active conformations and the inhibitor, STI571, into the inactive conformations. All models have been fully energy minimised. The molecular modelling studies described here explain (i) why Asp816Val KIT is constitutively active, (ii) why the nature of the substituting amino acid at residue 816 is relatively unimportant, and (iii) why the Asp816Val substitution confers resistance to the KIT-inhibitory drug STI571. The models will be valuable for predicting other kinase inhibitory drugs that may be active on wild-type and mutant forms of KIT. During the course of this work, a crystal structure of the active conformation of the KIT kinase domain has been published. Our model of the active conformation of the Asp816Val mutant is strikingly similar to this crystal structure, whereas our model of the active conformation of the wild-type kinase domain of KIT differs from the crystal structure in some respects. The reasons for this apparent discrepancy are discussed.  相似文献   

16.
Cytidine deaminase (CDA) is a cytosolic metalloprotein whose functional unit can be either a homotetramer (T-CDA) or a homodimer (D-CDA), depending on the species. In 1994, the first crystal structure of the dimeric Escherichia coli CDA has been published. However, a crystal structure of a tetrameric CDA was not determined until 2002. Prior to the disclosure of the experimentally elucidated structure of a tetrameric CDA, we derived a homology model of the human T-CDA employing the crystal structure of the dimeric E. coli CDA as a template. The comparison of our theoretical model with the crystal structure of the human T-CDA, subsequently published in 2004, validates our prediction: not only of the structural features of the monomer and the details of the binding site, but also the multimeric arrangement of the subunits were determined with high accuracy in our model. By means of a phylogenetic analysis conducted on CDAs from various organisms, we demonstrate that the E. coli CDA is one of the furthest known homologues of the human enzyme. Nonetheless, despite the evolutionary distance and, more importantly, the different multimeric arrangement of their functional units, the E. coli CDA proved to have all the necessary information to accurately infer the structure of its human homologue.  相似文献   

17.
以微生物来源的尿酸氧化酶晶体结构为模板,根据推测的人尿酸氧化酶序列,利用同源模建技术预测人尿酸氧化酶的三维结构。人尿酸氧化酶结构具有两个相同的T-fold结构域。叠合不同来源的尿酸氧化酶结构证实,人尿酸氧化酶与其他来源尿酸氧化酶的活性中心的结构高度保守。另外找到一些不利于人尿酸氧化酶聚合的因素,这些因素可能是使人尿酸氧化酶基因在进化中失活的部分原因。  相似文献   

18.
建立了大鼠骨骼系统的三维可视化模型。首先将大鼠连续断层解剖图像进行图像配准,然后分割、描绘出大鼠骨骼系统中所有的骨骼,最终利用Visul C++和可视化工具包(Visualization Toolkit,VTK)实现并行面绘制计算,建立大鼠骨骼系统的三维可视化模型。重建后的可视化模型结构明显、清楚,可以真实地在计算机中重现出大鼠的骨骼系统三维模型。  相似文献   

19.
20.
Recent crystal structures of RNA-dependent RNA polymerase (3Dpol) from Coxsackievirus B3 (CVB3) revealed that a tyrosine mutation at Phe364 (F364Y) resulted in structures with open active site whereas a hydrophobic mutation at Phe364 (F364A) led to conformations with closed active site. Besides, the crystal structures showed that the F364W mutation had no preference between the open and closed active sites, similar to wild-type. In this paper, we present a molecular dynamics (MD) study on CVB3 3Dpol in order to address some important questions raised by experiments. First, MD simulations of F364Y and F364A were carried out to explore how these mutations at Phe364 influence active site dynamics and conformations. Second, MD simulations of wild-type and mutants were performed to discover the connection between active site dynamics and polymerase function. MD simulations reveal that the effect of mutations on active site dynamics is associated with the interaction between the structural motifs A and D in CVB3 3Dpol. Interestingly, we discover that the active site state is influenced by the formation of a hydrogen bond between backbone atoms of Ala231 (in motif A) and Ala358 (in motif D), which has never been revealed before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号