首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review intends to integrate recent data from the Drosophila olfactory system into an up-to-date account of the neuronal basis of olfaction. It focuses on (1) an electron microscopic study that mapped a large proportion of fruitfly olfactory sensilla, (2) large-scale electrophysiological recordings that allowed the classification of the odor response spectra of a complete set of sensilla, (3) the identification and expression patterns of candidate odorant receptors in the olfactory tissues, (4) central projections of neurons expressing a given odorant receptor, (5) an improved glomerular map of the olfactory center, and (6) attempts to exploit the larval olfactory system as a model of reduced cellular complexity. These studies find surprising parallels between the olfactory systems of flies and mammals, and thus underline the usefulness of the fruitfly as an olfactory model system. Both in Drosophila and in mammals, odorant receptor neurons appear to express only one type of receptor. Neurons expressing a given receptor are scattered in the olfactory tissues but their afferents converge onto a few target glomeruli only. This suggests that in both phyla, the periphery is represented in the brain as a chemotopic map. The major difference between mammals and fruitflies refers to the numbers of receptors, neurons, and glomeruli, which are largely reduced in the latter, and particularly in larvae. Yet, if activated in a combinatorial fashion, even this small set of elements could allow discrimination between a vast array of odorants.  相似文献   

2.
Individual glomeruli in the mammalian main olfactory bulb represent a single or at most a few types of odorant receptors. Thus the physical arrangement of glomeruli at the surface of the olfactory bulb can be viewed as a sensory map representing approximately 1,000 types of odorant receptors. This review summarizes the recent advance of the knowledge regarding the spatial organization of the sensory map in the main olfactory bulb. Recent studies show that individual olfactory bulbs contain dual sensory maps, one in the lateral hemisphere and the other in the medial hemisphere of the bulb. The tracings of selective subsets of olfactory axons to their target glomeruli in the olfactory bulb show that glomeruli are parceled into large zones or bands. The spatial arrangement of these zones and bands are stereotypical and conserved across individual mice. Optical imaging studies show that glomeruli in the most rostrodosal zone, zone I, are further parceled into smaller functional domains, and suggest that odorant receptors having a common or similar molecular feature receptive site are grouped together and represented by glomeruli within the functional domain. The possible relation between the functional domain organization and the subjectively perceived odor quality (olfactory submodality) is reviewed.  相似文献   

3.
气味检测在食品安全控制、环境检测、缉毒、炸药搜索等社会安全防范方面起到重要作用。哺乳动物具有异常高灵敏的嗅觉系统,能检测到空气中极其痕量的气体分子,在缉毒、搜爆、反恐等社会防范方面发挥着重要的作用。本课题组提出了一种新型的基于植入式脑机接口的在体生物电子鼻:利用哺乳动物的嗅上皮作为初级气味感受器,气味信息通过嗅球和嗅皮层修饰处理后,将植入式微电极阵列包埋于嗅球或嗅皮层记录其响应信号,通过对记录到的神经元信号进行分析解码,实现气味检测与识别。本文重点介绍了在体生物电子鼻的原理、组成结构、技术实现、应用等,最后,对该领域的发展趋势进行了展望。  相似文献   

4.
We characterize the hemodynamic response changes in the main olfactory bulb(MOB)of anesthetized rats with near-infrared spectroscopy(NIRS)during the presentation of three different odorants:(i)plain air as a reference(Blank),(ii) 2-heptanone(HEP),and(iii)isopropylbenzene(Ib).Odorants generate different changes in the concentrations of oxyhemoglobin.Our results suggest that NIRS technology might be useful in discriminating various odorants in a non-invasive manner using animals with a superb olfactory system.  相似文献   

5.
A study of the peripheral olfactory organ, with special attention to the olfactory epithelium, has been carried out in the guppy (Poecilia reticulata). Guppy is well known to have a vision-based sexual behavior. The olfactory chamber caudally opens directly in an accessory nasal sac, which is bent medially and gives rise to two recesses that can be considered secondary accessory nasal sacs, antero-medial and postero-medial, respectively. The sensory epithelium, which lines only the medial wall of the nasal cavity, is basically flat rising in a very low lamella only in the posterior part. The olfactory receptors are not evenly distributed in the olfactory mucosa, but aggregate in shallow folds separated by epithelial cells with evident microridges. Ciliated olfactory sensory neurons and microvillous olfactory sensory neurons are clearly identified by transmission electron microscopy (TEM). Scarce crypt olfactory neurons are found throughout the sensory folds. The nasal sacs indicates the capacity to regulate the flow of odorant molecules over the sensory epithelium, possibly through a pump-like mechanism associated with gill ventilation. The organization of the olfactory organ in guppy is simple and reminds what is found in early posthatching stages of fish which at the adult state have a well developed olfactory organ. This simple organization supports the idea that the guppy rely on olfaction less than other fish species provided with more extended olfactory receptorial surface.  相似文献   

6.
This paper presents a novel method for inferring the odor based on neural activities observed from rats' main olfactory bulbs.Multi-channel extra-cellular single unit recordings are done by micro-wire electrodes(Tungsten,50 μm,32 channels)implanted in the mitral/tufted cell layers of the main olfactory bulb of the anesthetized rats to obtain neural responses to various odors.Neural responses as a key feature are measured by subtraction firing rates before stimulus from after.For odor inference,a decoding method is developed based on the ML estimation.The results show that the average decoding accuracy is about 100.0%,96.0%,and 80.0% with three rats,respectively.This work has profound implications for a novel brain-machine interface system for odor inference.  相似文献   

7.
Progress in our understanding of olfactory receptor physiology has progressed greatly over the past 10 years. It has become clear that many anatomical and molecular features of the peripheral aspect of the olfactory system have remained highly conserved across diverse species. Yet, this structure is responsible for conveying a wide variety of information about the environment that is necessary to the successful location of food, mates, and avoidance of danger, and it is thus not surprising that specializations have also evolved to suit the differing needs of different species. While the basic anatomical features reflect those of other mammals, functional studies of human olfactory receptor neurons have revealed physiological features both similar to and differing from those of other mammalian species. This review presents an overview of both the anatomical and physiological data describing the cell and molecular biology of the peripheral human olfactory system and how it functions in health and disease.  相似文献   

8.
Role of nerve growth factor in the olfactory system   总被引:1,自引:0,他引:1  
Olfactory neurons are unique in the mammalian nervous system because of their capacity to regenerate in adult animals. It has been shown that olfactory receptor cells located in the olfactory epithelium are replaced on a continuous basis and in response to injury throughout the life span of most species. NGF, which is one of the neurotrophic factors, is present in many areas of the central and peripheral nervous system. It has been shown that NGF in the olfactory bulb plays a role in the survival of cholinergic neurons in the horizontal limb of the diagonal band (HDB). Recent studies of NGF in the olfactory bulb suggest that it is involved in the development, maintenance, and regeneration of olfactory receptor cells. In this study, we review reports examining the relationship between NGF in the olfactory bulb and neuronal regeneration and development in the mammalian olfactory systems. Low- and high-affinity NGF receptor immunoreactivity is markedly expressed during regeneration and at different stages of development in the mouse olfactory system. This level of immunoreactivity is no longer present after completion of regeneration and at maturation. Other findings indicate that NGF injected into the olfactory bulb is transported retrogradely to the olfactory epithelium. It has also been shown that continuous anti-NGF antibody injection into the olfactory bulb causes degeneration and olfactory dysfunction. Administration of NGF directory into nasal cavity results in an increase in the expression of olfactory marker protein within the olfactory epithelium in axotomized rats. These findings suggested that the presence of NGF in the olfactory bulb plays an essential role in regeneration, maintenance, and development in the olfactory system of mammals.  相似文献   

9.
Compound action potentials were recorded from rat olfactory receptor neuron axons at measured distances from the stimulation electrode along the lateral surface of the main olfactory bulb. Distances were plotted as a function of the latencies measured from stimulus onset to the prominent negative trough of the triphasic compound action potential. A straight line was fitted to these data to calculate impulse conduction velocity, 0.42 +/- 0.01 m/s (n = 25). Two procedures were used to investigate whether those axons that project to caudal regions of the bulb had faster conduction velocities than axons projecting to rostral bulb. First, the stimulating electrode was moved to mid-bulb and the recording electrode was placed on the caudal bulb. Alternatively, axons were stimulated antidromically at the caudal bulb. These two procedures stimulate those axons projecting to caudal bulb and bypass olfactory receptor neuron axons that synapse in the rostral bulb. The mean impulse conduction velocities from these caudal and antidromic recordings were 0.58 +/- 0.19 m/s (n = 8) and 0.57 +/- 0.19 m/s (n = 9), respectively. Though both of these means are higher than the impulse conduction velocity calculated for stimulation at the rostral bulb, the differences were not statistically significant.  相似文献   

10.
Mammalian olfactory neurons possess a well-developed system of endocytic vesicles, endosomes, and lysosomes in their dendrites and perikarya. Vomeronasal neurons are similar and also contain much perikaryal agranular endoplasmic reticulum (AER). Olfactory supporting cells contain endocytic vesicles and endosomes associated closely with abundant fenestrated AER, and vesicles and numerous large dense vacuoles are present basally. Vomeronasal supporting cells have little AER, and few dense vacuoles occur in their bases. In olfactory neurons, ultrastructural tracers (0.08% horseradish peroxidase, thorium dioxide, ferritin) are endocytosed by olfactory receptor endings and transported to the cell body, where their movement is halted in lysosomes. Higher concentrations (1%) of horseradish peroxidase penetrate olfactory receptor plasma membranes and intercellular junctions. In olfactory supporting cells, endocytosed tracers pass through endosomes to accumulate in dense basal vacuoles. These observations indicate that olfactory sensory membranes are rapidly cycled and that endocytosed materials are trapped within the epithelium. It is proposed that in the olfactory epithelium, endocytosis presents redundant odorants to the enzymes of the supporting cell AER to prevent their accumulation, whereas in the vomeronasal epithelium the receptor cells carry out this activity.  相似文献   

11.
12.
This paper describes four investigations of the olfactory mucosa of the brown trout: 1) the ultrastructure of the olfactory mucosa as revealed by scanning (SEM), conventional transmission (TEM), and high voltage (HVEM) electron microscopy; 2) light and electron-microscopic investigations of retrograde transport of the tracer macromolecule horseradish peroxidase (HRP) when applied to the cut olfactory nerve; 3) SEM and TEM investigations of the effects of olfactory nerve transection on cell populations within the olfactory epithelium; and 4) ultrastructural investigations of reversible degeneration of olfactory receptors caused by elevated copper concentrations. The trout olfactory epithelium contains five cell types: ciliated epithelial cells, ciliated olfactory receptor cells, microvillar olfactory receptor cells, supporting cells, and basal cells. The ciliated and microvillar olfactory receptor cells and a small number of basal cells are backfilled by HRP when the tracer is applied to the cut olfactory nerve. When the olfactory nerve is cut, both ciliated and microvillar olfactory receptor cells degenerate within 2 days and are morphologically intact again within 8 days. When wild trout are taken from their native stream and placed in tanks with elevated copper concentrations, ciliated and microvillar cells degenerate. Replacement of these trout into their stream of origin is followed by morphologic restoration of both types of olfactory receptor cells. Ciliated and microvillar receptor cells are primary sensory bipolar neurons whose dendrites make contact with the environment; their axons travel directly to the brain. Consequently, substances can be transported directly from the environment into the brain via these "naked neurons." Since fish cannot escape from the water in which they swim, and since that water may occasionally contain brain-toxic substances, the ability to close off--and later reopen--this anatomic gateway to the brain would confer a tremendous selective advantage upon animals that evolved the "brain-sparing" capacity to do so. Consequently, the unique regenerative powers of vertebrate olfactory receptor neurons may have their evolutionary origin in fishes.  相似文献   

13.
In the giant male prawn, Macrobrachium rosenbergii, the olfactory system is thought to be the main pathway for modulating sexual behavior through pheromone perception. In this report, we first used gross anatomical, histological, and SEM methods to describe the structures of the olfactory receptors (sensilla setae), their neural pathways, and possible role in modulating mating behavior. On the surfaces of antennule and antenna filaments there are four types of sensory receptors, viz single spike‐like setae, single flagellum‐like setae, multiple flagella‐like setae, and aesthetascs (ASs). The ASs, which had previously been proposed to be odor receptor setae, are found only on the short filament of lateral antennule (slAn). Each AS on the slAn connects with olfactory receptor neurons (ORNs), whose axons form an outer central antennule nerve (ocAnNv), which then connects with the olfactory neutrophil (ON) of the brain. Thus, the slAn is the major olfactory organ that conveys sensory inputs from each AS to the ON within the deutocerebrum. GABA immunoreactivity was present in ASs, neurons of ORNs, inner central antennular, lateral tegumentary nerve, ocAnNv and the ON, inferring that GABA is the likely neurotransmitter in modulating olfaction. Disruption of the slAn by ablation or covering with Vaseline, resulted in significant reduction of mating behavior, indicating that this organ is crucial for sex pheromone perception. Identification of the active pheromones and further bioassays are now being performed. Microsc. Res. Tech. 76:572–587, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
研发了一种基于视嗅觉认知的虚拟嗅觉生成装置,可用于虚拟环境中视嗅觉融合认知的人机交互,该装置由机械本体及其控制系统组成,可单独或同时输出3种气味。首先,分析按压气味瓶所需的作用力,设计定量送气机构,并研制装置的机械本体;然后,依据装置的驱动部件和视嗅觉交互界面,开发基于串口通信的控制系统。初步实验结果表明,所研制的虚拟嗅觉生成装置在响应时间和控制精度等方面都能满足用户需求,可为虚拟环境提供逼真的视嗅觉感知。  相似文献   

15.
A progestin receptor (PR) has been detected in the olfactory organ of the trout Salmo trutta fario. The specificity of this receptor was high for 17α,20β‐dihydroxy‐4‐pregnen‐3‐one (17α,20β‐DP), but it also bound 17α‐hydroxy‐progesterone (17α‐OHP) and 21‐hydroxyprogesterone (21‐OHP), even when present at low concentrations (10‐fold in relative binding affinity assay). Progesterone (P) competed effectively at much higher concentrations (1,000‐fold in relative binding affinity assay). Immunohistochemical studies carried out with three different monoclonal antibodies against human progesterone receptor (hPR), chicken progesterone receptor hinge region (cPR), and chicken progesterone receptor A/B domain (PR22), revealed that immunoreactivity was present in the epithelium of the olfactory organ of females and males of the trout Salmo trutta fario only against hPR. Western blotting showed two hPR immunoreactive bands of about 62 and 66 kDa. Finally, a portion of the cDNA of about 300 nucleotides extending over the DNA binding domain and the ligand binding domain was cloned and sequenced, revealing a high degree of sequence homology of the PR in Salmo trutta fario with the PR in other teleosts. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
We used scanning (SEM) and transmission (TEM) electron microscopy to examine ultrastructural changes in the olfactory epithelium (OE) of rainbow trout following unilateral olfactory nerve section. Both ciliated receptor cells (CRC) and microvillar receptor cells (MRC) degenerated and subsequently differentiated from unidentified precursor cells. The following changes took place in fish that were held at 10 degrees C at the stated period following olfactory nerve section: on day 7, MRC and CRC contained intracellular vacuoles; on day 12, the olfactory knobs appeared disrupted; by day 26, olfactory receptor cells were absent from the OE; on day 42, there were receptor cell bodies and a few CRC with short cilia at the apical surface; and on day 55, a small number of both CRC and MRC had differentiated. By day 76, both CRC and MRC repopulated the OE. Degenerative changes in the cytoplasm of the sustentacular cells (SC) and ciliated nonsensory cells (CNC) were observed in the first 26 days following olfactory nerve section, but these cells remained intact throughout the experiment. The degeneration and subsequent differentiation of CRC and MRC supports and extends previous observations that both cell types are olfactory receptor neurons with axons that extend along the olfactory nerve to the olfactory bulb.  相似文献   

17.
Macro and microdissection methods, conventional histology and immunohistochemical procedures were used to investigate the nasal cavity and turbinate complex in fetal and adult sheep, with special attention to the ethmoturbinates, the vestibular mucosa, and the septal mucosa posterior to the vomeronasal organ. The ectoturbinates, which are variable in number and size, emerge and develop later than the endoturbinates. The olfactory sensory epithelium is composed of basal cells, neurons, and sustentacular cells organized in strata, but numerous different types are distinguishable on the basis of their thickness and other properties; all variants are present on the more developed turbinates, endoturbinates II and III. Mature neurons and olfactory nerve bundles express olfactory marker protein. We found no structure with the characteristics that in mouse define the septal organ or the ganglion of Grüneberg. Our results thus suggest that in sheep olfactory sensory neurons are exclusively concentrated in the main olfactory epithelium and (to a lesser extent) in the vomeronasal organ. Microsc. Res. Tech. 77:1052–1059, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Introduction to olfactory neuroepithelium   总被引:4,自引:0,他引:4  
Among the five senses, the sense of smell (olfaction) is the most sensitive and emotional window on the outside world (Stern and Marx, 1999). The olfactory system recognizes and discriminates myriad odorants of diverse molecular structures. What makes the olfactory system so specific and sensitive? OE harboring the olfactory receptor neurons (ORNs) also has an another unusual characteristic ability that fascinates scientists. Neurogenesis in this tissue continues throughout lifetime. This unique character provides an elegant model to study neurogenesis and neuronal plasticity, since neuronal birth, differentiation, survival, axon pathfinding, target recognition, synapse formation, and cell death can be examined in the mature OE. This special issue of Microscopic Research and Technique presents the recent developments in this exciting field of neuroscience, “structure and function of olfactory neuroepithelium.” Microsc. Res. Tech. 58:133–134, 2002. © 2002 Wiley-Liss, Inc.  相似文献   

19.
This paper presents electron-microscopic observations on biopsies of the olfactory mucosae of several classes of patients with smell disorders: 1) patients with loss of smell function following head injury (post-traumatic anosmics or hyposmics); 2) patients with loss of smell function following severe head colds and/or sinus infections (post-viral olfactory dysfunction, or PVOD); and 3) patients that have lacked smell function since birth (congenital anosmics). Of these, the traumatic anosmics' olfactory epithelia were quite disorganized; the orderly arrangement of supporting cells, ciliated olfactory receptor neurons, microvillar cells, and basal cells was disrupted. Although many somata of ciliated olfactory receptors were present, few of their dendrites reached the epithelial surface. The few olfactory vesicles present usually lacked olfactory cilia. The post-viral anosmics, too, had a greatly reduced number of intact ciliated olfactory receptor neurons, and most of those present were aciliate. The post-viral hyposmics had a larger population of intact, ciliated olfactory receptor cells. In the seven cases of congenital anosmia studied, no biopsies of olfactory epithelium were obtained, indicating the olfactory epithelium is either absent--or greatly reduced in area--in these individuals.  相似文献   

20.
The extrabulbar olfactory projections (EBOP) is a collection of nerve fibers that originate from primary olfactory receptor neurons. These fibers penetrate into the brain, bypassing the olfactory bulbs (OBs). While the presence of an EBOP has been well established in teleosts, here we morphologically characterize the EBOP structure in four species each with a different morphological relationship of OB with the ventral telencephalic area. Tract‐tracing methods (carbocyanine DiI/DIA and biocytin) were used. FMRFamide immunoreactive nervus terminalis (NT) components were also visualized to define any neuroanatomical relationship between the NT and EBOP. Unilateral DiI/DiA application to the olfactory chamber stained the entire olfactory epithelium, olfactory nerve fibers, and ipsilateral olfactory bulb. Labeled primary olfactory fibers running ventromedially as extrabulbar primary olfactory projections reached various regions of the secondary prosencephalon. Only in Moenkhausia sanctaefilomenae (no olfactory peduncle) did lipophilic tracer‐labeled fibers reach the ipsilateral mesencephalon. The combination of tracing techniques and FMRFamide immunohistochemistry revealed a substantial overlap of the label along the olfactory pathways as well as in the anterior secondary prosencephalon. However, FMRFamide immunoreactivity was never colocalized in the same cellular or fiber component as visualized using tracer molecules. Our results showed a certain uniformity in the neuroanatomy and extension of EBOP in all four species, independent of the pedunculate feature of the OBs. The present study also provided additional evidence to support the view that EBOP and FMRFamide immunoreactive components of the NT are separate anatomical entities. Microsc. Res. Tech. 78:268–276, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号